less than 0.01% for $c \le 0.3$. However, $H_{42}^{(1)}$ overestimates H while $H_{52}^{(1)}$ underestimates H. The average of $H_{42}^{(1)}$ and $H_{52}^{(1)}$ is a remarkably accurate approximation to the H-function. It is compared in Table I with values of H-function given by Chandrasekhar⁵ (for c = 0.1) and Carlstedt and Mullikin⁷ ($c \ge 0.3$), and the agreement is better than 0.005% for $c \approx 1$ and better than 0.001% for $c \le 0.5$. The H-functions given by Carlstedt and Mullikin⁷ are presumably accurate to within about 0.001%.

P. Rafalski² has pointed out that the method of approximation used here and in I is closely allied to that of Yu. A. Romanov⁴ and suggested comparing the results of Romanov with those in I. Romanov⁴ uses the equation for the angular distribution function $\phi(\mu)$ on the boundary of a semi-infinite isotropic medium (Milne Problem)

$$\int_0^1 \frac{\phi(\mu')\mu' d\mu'}{\mu+\mu'} = \frac{c}{2\phi(\mu)(1-K^2\mu^2)}, \quad (13)$$

where K is the root of Eq. (6). He approximates $\phi(\mu)$ by its first iterate obtained using an initial approximation

$$\phi_0(\mu) = \frac{a + b\mu}{1 - K^2 \mu^2} \quad . \tag{14}$$

TABLE I

The	H-function	and	its	Analytic	Approximation
-----	------------	-----	-----	----------	---------------

c	0	0.1	0.3	0.5	0.7	0.9	0.99	1.0		
$H \approx \frac{1}{2} \left[H_{42}^{(1)} + H_{52}^{(1)} \right]$										
0	1	1	1	1	1	1	1	1		
0.2	1	1.01864	1.06116	1,11348	1,18255	1.29148	1.39982	1.45041		
0.4	1	1.02630	1.08811	1.16798	1,28062	1.47848	1.70748	1.82925		
0.6	1	1.03106	1.10538	1.20434	1.35006	1,62584	1.98328	2,19406		
0.8	1	1.03436	1.11762	1.23088	1.40287	1.74734	2,23690	2.55260		
1.0	I	1.03682	1.12684	1.25125	1.44472	1.85003	2.47268	2,90768		
	<i>H</i> -function									
0	1	1	1	1	1	1	1	1		
0.2	1	1.01864	1,06115	1,11346	1,18252	1.29143	1.39977	1.45035		
0.4	1	1.02630	1.08811	1.16797	1,28062	1.47850	1.70750	1,82928		
0.6	1	1.03106	1,10537	1.20435	1.35008	1,62588	1.98336	2.19413		
0.8	1	1.03436	1.11763	1.23089	1.40290	1.74740	2,23700	2,55270		
1.0	1	1.03681	1,12684	1,25126	1,44475	1,85010	2,47279	2.90781		

⁷J. L. CARLSTEDT and T. W. MULLIKIN, "Chandrasekhar's X and Y Functions," Astrophys. J. Suppl., 12, 113 (1966).

We observe that the *H*-function and the angular distribution function ϕ are related by

$$H(\mu) = \frac{2}{c} (1 - K\mu) \phi(\mu)$$
 (15)

as can easily be demonstrated from Eqs. (1) and (13). We further observe that with Eq. (15), the expressions^{1,5,8} for the directional and net albedos in terms of H and in terms⁴ of ϕ are equivalent. The first iterate ϕ_1 from Eqs. (13) and (14) is, in fact, equivalent to Eqs. (8) and (11).

The above approximations for the *H*-function when applied to the expressions for the directional and net reflection functions in terms of the *H*-function^{1,5,8} yield the desired approximations. In particular, for particles incident in the direction μ_0 , the net albedo is

$$R(\mu_0) = 1 - (1 - c)^{1/2} H(\mu_0).$$
(16)

Table II compares 1-R(1) and its approximate value achieved by replacing H by $\frac{1}{2} [H_{42}^{(1)} + H_{52}^{(1)}]$.

TABLE II 1 - $R(\mu_0 = 1) = (1-c)^{1/2} H(1)$

с	0	0.1	0,3	0,5	0.7	0,9	0.99	1
$\frac{1}{2} \left[H_{42}^{(1)} + H_{52}^{(1)} \right]$	1	0,98361	0,94278	0.88477	0.79131	0.58503	0.24727	0
H-function	1	0.98360	0.94278	0.88477	0.79132	0,58505	0.24728	0

A more complete comparison⁴ of the various approximations to the H-function and directional and net reflection functions will be presented as an ANL report. Further applications of the above approximations are being investigated.

I. K. Abu-Shumays

Argonne National Laboratory Argonne, Illinois 60439 September 9, 1966

⁸D. S. SELENGUT, "Distribution of Neutrons Reflected from a Semi-infinite Slab," *Reactor Technology*, KAPL-2000-20, Report No. 23, p. III. 44, Knolls Atomic Power Laboratory (1963).

Corrigendum

BAL RAJ SEHGAL, "Monte Carlo Calculations of Resonance Integral of ²³²Th," Nucl. Sci. Eng., 27, 95 (1967).

The first equation on p. 102 should read:

 $(S/M)_{\text{Th}} = 1.138 (S/M)_{\text{ThO}_2} + 0.066.$