Letter to the Editor

T h e Albed o Proble m and Chadrasekhar's //-Functio n II*

This extension of our recent letter¹ (which will here be referred to as I) gives more accurate analytic approximations to Chandrasekhar's *H*-function, and to the directional **and net reflection functions (albedos) for a semi-infinite medium with isotropic scattering. Following a suggestion of P. Rafalski² , the relationship of our work¹ ' 3 to that of Romanov⁴ is also discussed.**

In I we approximated the *H*-function⁵

$$
H(\mu) = 1 + \frac{c}{2} \mu H(\mu) \int_0^1 \frac{H(\mu') d\mu'}{\mu + \mu'}
$$
 (1)

by its first iterates $H^{(1)}_{ii}$ resulting from particular choices of initial (zero-) approximations $H_{ii}^{(0)}$ satisfying the condi**tions**

$$
H(0) = 1, \t\t [H(\mu)]_{c=0} = 1 \t\t (2a,b)
$$

$$
\frac{c}{2} \int_0^1 H(\mu) = 1 - (1-c)^{1/2}.
$$
 (3)

The subscript i takes values¹ 1, 2, and 3, each of which **refers to a different iterative formula. In particular, the** value $i = 2$ refers to the iterative formula most suited for **our present purpose**

$$
1/H_2^{(n+1)}(\mu) = 1 - \frac{c}{2} \mu \int_0^1 \frac{H_2^{(n)}(\mu') d\mu'}{\mu + \mu'} \ . \tag{4}
$$

We here observe that the *H*-function satisfies the additional **condition⁸**

$$
\frac{c}{2} \int_0^1 \frac{H(\mu)}{1 - K\mu} d\mu = 1 , \qquad (5)
$$

where K is the positive root of the equation

$$
\frac{c}{2K} \ln \frac{1+K}{1-K} = 1 \tag{6}
$$

1 I. K. ABU-SHUMAYS, "The Albedo Problem and Chandrasekhar's //-function," *Nucl. Sci. Eng.,* **26, 430 (1966).**

² P. RAFALSKI, Private Communication (1966).

³ I. K. ABU-SHUMAYS, "Generating Functions and Transport

Theory," Thesis, Harvard University, Cambridge, Massachusetts **(Feb. 1966).**

⁴YU. A. ROMANOV, "Exact Solutions of Single Velocity Kinetic Equation and their Application in Calculating Diffusion Problems (Improved Diffusion Method)," FTD-TT-61-124, p. 2 (1962). Trans-lated from "Issledovasiya Kriticheskikh Parametrov Reaktomykh Sistemy." Also see *Nucl. Sci. Abstracts,* **16, 11, Abs. 14243, p. 1831 (1962).**

5 S. CHANDRASEKHAR, *Radiative Transfer,* **Oxford, New York**

(1950). "SOBOLEV, *A Treatise on Radiative Transfer,* **Translated by S. C. Gaposhkin, p. 81, Eq. (114), Van Nostrand (1963).**

Conditions of Eqs. (2), (3), and this additional condition of Eq. (5) admit the selection of initial approximations $H_{ii}^{(0)}$ **more appropriately than in I, such as**

$$
H_{3i}^{(0)} = 1 + A\mu + B\mu^2 \tag{7}
$$

$$
H_{4i}^{(0)} = \frac{a + b\mu}{1 + K\mu}
$$
 (8)

$$
H_{5i}^{(0)} = \frac{1 + a'\mu + b'\mu^2}{1 + K\mu} \qquad (9)
$$

The constants on the right-hand sides of Eqs. (7), (8), and (9), determined from Eqs. (3) and (5) are

$$
A = \frac{4}{c} \left[1 - (1 - c)^{1/2} \right] - 2 - \frac{2}{3} B = \alpha - \frac{2}{3} B \tag{7a}
$$

$$
B = \frac{K \ln (1 + K) + [K + \ln (1 - K)] \alpha}{\frac{K}{b} + (\frac{2}{3} - \frac{1}{K}) \ln (1 - K) - 1}
$$
 (7b)

$$
a = \frac{(1-c)^{1/2} b}{K}, \quad b^{-1} = \frac{(1-c)^{1/2}}{2K} - \frac{c}{4K^2} \ln(1 - K^2) \tag{8a,b}
$$

$$
a' = \frac{N}{D}, \qquad b' = \left[K^2 + \frac{c}{a} a' \ln(1 - K^2)\right] / (1 - c) \tag{9a,b}
$$

$$
N = \frac{2K^2}{c} \left[1 - (1-c)^{1/2} \right] - K \ln(1+K) - \frac{K^2}{1-c} \left[\frac{K}{2} - 1 + K^{-1} \ln(1+K) \right]
$$

$$
D = K - \ln(1+K) + \frac{C \ln(1-K^2)}{2(1-c)} \left[\frac{K}{2} - 1 + K^{-1} \ln(1+K) \right].
$$

With the choices of Eqs. (7), (8), and (9), the first iterates of Eq. (4) are, respectively,

$$
H_{32}^{(1)} = \left\{ 1 - \frac{c}{2} \left[(1 - A\mu + B\mu^2)\mu \ln \frac{1 + \mu}{\mu} + A\mu + \left(\frac{\mu}{2} - \mu^2\right) B \right] \right\}^{-1} \quad (10)
$$

$$
H_{42}^{(1)} = \left(1 - \frac{cb}{2K(1 - K\mu)} \left\{ \left[(1 - c)^{1/2} - K\mu \right] \mu \ln \frac{1 + \mu}{\mu} \right\}^{-1} \quad (11)
$$

$$
+ \left[1 - (1-c)^{1/2}\right] \mu \ln(1+K) \left\{\right\}^{-1} \tag{11}
$$

$$
H_{52}^{(1)} = \left\{ 1 - \frac{c}{2(1 - K\mu)} \left[(1 - a'\mu + b'\mu^2) \mu \ln \frac{1 + \mu}{\mu} - \left(1 - \frac{a'}{K} + \frac{b'}{K^2} \right) \mu \ln (1 + K) + B\mu \left(\frac{1}{K} - \mu \right) \right] \right\}^{-1}.
$$
 (12)

The approximations Eqs. (10), (ll), and (12) are superior to those given in I. The term $H_{32}^{(1)}$ has an error less than **0.09% for** $c \approx 1$, less than 0.05% for $c = 0.6$, and less than **0.02% for** $c \le 0.3$ **;** $H_{42}^{(1)}$ and $H_{52}^{(1)}$ have comparable errors **less than 0.09% to** $c \approx 1$, less than 0.04% for $c = 0.6$, and

 ϵ

^{*}Work done under the auspices of the USAEC.

less than 0.01% for $c \le 0.3$. However, $H_{42}^{(1)}$ overestimates *H* while $H_{52}^{(1)}$ underestimates *H*. The average of $H_{42}^{(1)}$ and $H_{22}^{(1)}$ is a remarkably accurate approximation to the H **function. It is compared in Table I with values of //-function given by Chandrasekhar⁵ (for** *c* **=0.1) and** Carlstedt and Mullikin⁷ ($c \ge 0.3$), and the agreement is **better than 0.005% for** $c \approx 1$ **and better than 0.001% for** $c \le$ 0.5. The H -functions given by Carlstedt and Mullikin⁷ are **presumably accurate to within about 0.001%.**

P. Rafalski² has pointed out that the method of approximation used here and in I is closely allied to that of Yu. A. Romanov⁴ and suggested comparing the results of Romanov with those in I. Romanov⁴ uses the equation for the angular distribution function $\phi(\mu)$ on the boundary of a semi-infinite **isotropic medium (Milne Problem)**

$$
\int_0^1 \frac{\phi(\mu')\mu'd\mu'}{\mu + \mu'} = \frac{c}{2\phi(\mu)(1 - K^2 \mu^2)},
$$
 (13)

where *K* is the root of Eq. (6). He approximates $\phi(\mu)$ by its **first iterate obtained using an initial approximation**

$$
\phi_0(\mu) = \frac{a + b\mu}{1 - K^2 \mu^2} \quad . \tag{14}
$$

TABLE I The *H*-function and its Analytic Approximation

c	$\bf{0}$	0.1	0.3	0.5	0.7	0.9	0.99	1.0						
μ	$H \approx \frac{1}{2} [H_{42}^{(1)} + H_{52}^{(1)}]$													
$\mathbf 0$	$\mathbf{1}$													
0.2		1.01864	1.06116	1.11348	1.18255	1.29148	1.39982	1.45041						
0.4		1.02630	1,08811	1.16798	1.28062	1.47848	1.70748	1.82925						
0.6	1	1,03106	1.10538	1.20434	1.35006	1.62584	1.98328	2,19406						
0.8	1	1.03436	1.11762	1.23088	1.40287	1.74734	2.23690	2.55260						
1.0		1.03682	1.12684	1.25125	1.44472	1.85003	2.47268	2.90768						
					H -function									
Ω	1	1												
0.2		1,01864	1.06115	1.11346	1.18252	1.29143	1.39977	1.45035						
0.4		1.02630	1.08811	1.16797	1,28062	1,47850	1.70750	1.82928						
0.6	1	1.03106	1.10537	1.20435	1.35008	1.62588	1.98336	2.19413						
0.8	1	1.03436	1.11763	1,23089	1,40290	1,74740	2.23700	2.55270						
1,0		1.03681	1,12684	1.25126	1.44475	1.85010	2.47279	2.90781						

7 J. L. CARLSTEDT and T. W. MULLIKIN, "Chandrasekhar's X and Y Functions," *Astrophys. J. Suppl.,* **12, 113 (1966).**

We observe that the *H*-function and the angular distribution **function 0 are related by**

$$
H(\mu) = \frac{2}{c} \left(1 - K\mu \right) \phi \left(\mu \right) \tag{15}
$$

as can easily be demonstrated from Eqs. (1) and (13). We further observe that with Eq. (15), the expressions^{1,5,8} for **the directional and net albedos in terms of** *H* **and in terms ⁴** of ϕ are equivalent. The first iterate ϕ_1 from Eqs. (13) and **(14) is, in fact, equivalent to Eqs. (8) and (11).**

The above approximations for the H -function when **applied to the expressions for the directional and net** reflection functions in terms of the H -function^{1,5,8} yield the **desired approximations. In particular, for particles inci**dent in the direction μ_0 , the net albedo is

$$
R(\mu_0) = 1 - (1-c)^{1/2} H(\mu_0).
$$
 (16)

Table II compares $1 - R(1)$ and its approximate value achieved by replacing *H* by $\frac{1}{2} [H_{42}^{(1)} + H_{52}^{(1)}]$.

TABLE II $1 - R(\mu_0 = 1) = (1-c)^{1/2} H(1)$

	0.1	0.3	0.5	0.7	0.9	0.99	
$\frac{1}{2}[H_{42}^{(1)} + H_{52}^{(1)}]$ 1 0.98361 0.94278 0.88477 0.79131 0.58503 0.24727 0							
H -function			\mid 1 0,98360 0,94278 0,88477 0,79132 0,58505 0,24728 0				

A more complete comparison⁴ of the various approximations to the *H*-function and directional and net reflection **functions will be presented as an ANL report. Further applications of the above approximations are being investigated.**

/. k. Abu-Shumays

Argonne National Laboratory Argonne, Illinois 60439 September 9, 1966

^SD. S. SELENGUT, "Distribution of Neutrons Reflected from a Semi-infinite Slab," *Reactor Technology,* **KAPL-2000-20, Report No. 23, p. III. 44, Knolls Atomic Power Laboratory (1963).**

Corrigendum

BAL RAJ SEHGAL, "Monte Carlo Calculations of Resonance Integral of ²³²Th," *Nucl. Sci. Eng.,* **27, 95 (1967).**

The first equation on p. 102 should read:

 $(S/M)_{\text{Th}} = 1.138 \ (S/M)_{\text{ThO}_2} + 0.066.$