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In a PN approximation, one has to take the moments of 
the balance Eq. (1) in the half-space. The integration is 
either over all the fl directed into the medium at r, or over 
all the surface Sr seen from dS at r. 

Now, even-order and odd-order spherical harmonics 
represent a system of orthogonal functions in the half-
space. The decision for the even-order spherical har-
monics arises from the argument to retain a special 
balance equation for the current density. This equation 
follows from Eq. (1) as the zero-moment with (1 ,ra) = (0,0). 
The cavity boundary conditions in a PN approximation, 
therefore, take the form 

/ = / Y? $(rf,a)(a-n)d£l 
G - » < o Q . » < o 

= / rr$(r',Q) r* dSf 

1 = 0 ,2 ,4 , . N-l, 

R6 

-1 < m^l N odd, 

For zero exposure, Eq. (3) reduces to the vacuum boundary 
conditions 

/ rr:$(r,0)(Q-ii)rfS2 = 0 
O- n< o 

1 = 0 , 2 , 4 , . . . , N~ 1, N odd, - l ^ r a ^ l . 

In contrast to the generalized Marshak-type boundary 
conditions cited by Davison3, Eqs. (3) and (4) represent just 
the right number of cavity and vacuum boundary conditions 
for more-dimensional problems. 
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Fine Group Cross Sections of Resonance Absorbers 

Previously1 a definition of multigroup resonance cross 
section was given as 

where 

and 

— 21 Ci t 

Si* = (l-pi)tT,p/pi5u 

Ci = 1+ ( S f - Z * ) 6 u / 2 & p . (1) 

Here, i refers to the Vth resonance of a group g of width 
6u lethargy units which contains n resonances 

| = average lethargy gain on collision 

hp = potential scattering cross section 
n 

Tig = Zv 2** 
i = 1 

pi - resonance escape probability. 

For a fine group (bu < 2£ approximately), the previous 
derivation needs to be extended to include the possibility of 
neutrons skipping the group. Consider a group below 
source energies for a source emitting Ira/(cm3 sec) and 
above thermal energies so that slowing down theory 
applies. Neutron balance for an infinite homogeneous 
system gives the equation 

E Zifa + = / , i = 1 (2) 

and we will assume that higher groups do not contain 
absorption. In Eq. (2), (j)g is the group flux, 2r is the group 
removal cross section, and / is the probability of a neutron 
entering the group given by 

(3) 

/ = X r 6 u / Z Z p 

= E Vp&tft/iVp . (3) 

(4) 

Here, the summation on I is taken over all nuclides with 
potential scattering cross section Xpi and average lethargy 
gain on collision and 

/z =[l-exp(-6u)-al6u]/Zl(l-ai) , Sw < In1/**/( = 2^) A 
= 1 6u > In1/ai , ) 

(4) 

where a\ is the maximum fractional energy loss on colli-
sion with nuclide Z. 

To obtain the correct reaction rates we must have 
i - 1 

E.-0* = TT pk(l-pz), with po= 1 , (5) k- o 
provided we assume the flux to return to asymptotic form 
between resonances. From Eqs. (2), (3),'and (5) we have 

(6) 

(7) 
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= (111 Pk + / " *) > 

and from Eqs. (5) and (6) 

Hi = 2/ Ci , 
where 2,* is given by Eq. (1), but now 

c. fr [.-(.- ;!!>)//] -
which must be simplified. 

We require an approximation to Ci that preserves 
neutron balance given by Eq. (2) but which does not distin-
guish between the actual ordering or resonances in the 
group. We assume that 

Ci - 1 + a tk - €| ^ +b€i , (8) 

where €,• = 1 E q u a t i o n (2) gives 

/ ( l - e , ) - | l - [ l - / f } ' 1 - 1 » (») 

and we require this to be accurate to terms 6,-e^. When 
only one resonance is in the group, we require 
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Using this choice in Eq. (8) then gives 

Equation (8) thus becomes 

c , « 1 + [ ( j - s * - b u j u n p . (10) 

For fine groups, Eq. (10) should replace the corre-
sponding Eq. (1). As the width of the group is increased, 
both equations become identical. 
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