λ

In a P_N approximation, one has to take the moments of **the balance Eq. (1) in the half-space. The integration is** either over all the Ω directed into the medium at γ , or over all the surface S' seen from dS at r .

Now, even-order and odd-order spherical harmonics represent a system of orthogonal functions in the halfspace. The decision for the even-order spherical harmonics arises from the argument to retain a special balance equation for the current density. This equation follows from Eq. (1) as the zero-moment with $(1,m) = (0,0)$. The cavity boundary conditions in a P_N approximation, **therefore, take the form**

$$
\int_{\Omega \cdot \mathbf{n} < 0} Y_1^{\frac{1}{m}} \Phi(\mathbf{r}, \Omega) (\Omega \cdot \mathbf{n}) d\Omega = \int_{\Omega \cdot \mathbf{n} < 0} Y_1^{\frac{1}{m}} \Phi(\mathbf{r}', \Omega) (\Omega \cdot \mathbf{n}) d\Omega
$$
\n
$$
= \int_{S'} Y_1^{\frac{1}{m}} \Phi(\mathbf{r}', \Omega) \frac{(\Omega \cdot \mathbf{n})(\Omega \cdot \mathbf{n}')}{R^2} dS',
$$
\n
$$
1 = 0, 2, 4, \ldots, \qquad N - 1, \qquad N \text{ odd}, \qquad -1 \leq m \leq 1 \qquad (3)
$$

For zero exposure, Eq. (3) reduces to the vacuum boundary conditions

$$
\int_{\Omega \cdot \mathbf{n} < 0} Y_1^{\frac{1}{m}} \Phi(\mathbf{r}, \Omega) (\Omega \cdot \mathbf{n}) d\Omega = 0
$$

1 = 0, 2, 4, ..., $N - 1$, N odd, $-1 \leq m \leq 1$. (4)

In contrast to the generalized Marshak-type boundary conditions cited by Davison³ , Eqs. (3) and (4) represent just the right number of cavity and vacuum boundary conditions for more-dimensional problems.

D. Emendorfer

Institut ftir Kernenergetik Technische Hochschule Stuttgart, Germany

July 21, 1966

³B. DAVISON, *Neutron Transport Theory,* **Clarendon Press, Oxford, N. Y. (1957).**

Fine Group Cross Sections of Resonance Absorbers

Previously¹ a definition of multigroup resonance cross section was given as

$$
\Sigma_i = \Sigma_i^* C_i \quad ,
$$

where

$$
\Sigma_i^* = (1-p_i)\overline{\xi} \Sigma_p / p_i \delta u
$$

and

$$
C_i = 1 + \left(\Sigma_g - {\Sigma_i}^*\right) \delta u / 2\overline{\xi} \Sigma_p \qquad . \tag{1}
$$

Here, i refers to the i th resonance of a group g of width **6u lethargy units which contains** *n* **resonances**

 $\overline{\xi}$ = average lethargy gain on collision

 Σ_p = potential scattering cross section

 $\Sigma_g = \sum_{i=1}^n \Sigma_i^*$

 p_i = **resonance escape probability.**

For a fine group $(\delta u \leq 2\overline{\xi})$ approximately), the previous **derivation needs to be extended to include the possibility of neutrons skipping the group. Consider a group below** source energies for a source emitting $1n/(cm^3 \text{ sec})$ and **above thermal energies so that slowing down theory applies. Neutron balance for an infinite homogeneous system gives the equation**

$$
\sum_{i=1}^{n} \Sigma_{i} \phi_{g} + \Sigma_{r} \phi_{g} = f , \qquad (2)
$$

and we will assume that higher groups do not contain absorption. In Eq. (2), ϕ_g is the group flux, Σ_r is the group removal cross section, and f is the probability of a neutron **entering the group given by**

$$
f = \sum_{i} \delta u / \overline{\xi} \Sigma_{p}
$$

= $\sum_{i} \sum_{p i} \xi_{i} f_{i} / \overline{\xi} \Sigma_{p}$ (3)

Here, the summation on I is taken over all nuclides with potential scattering cross section Σ_{pl} and average lethargy gain on collision ξ_l and

$$
f_l = [1 - \exp(-\delta u) - \alpha_l \delta u]/\xi_l (1 - \alpha_l), \quad \delta u \leq \ln^1/\alpha_l \ (\cong 2\xi_l) ,
$$

= 1
$$
\delta u \geq \ln^1/\alpha_l , \qquad \S
$$

(4)

where α_l is the maximum fractional energy loss on colli**sion with nuclide Z.**

To obtain the correct reaction rates we must have

$$
\Sigma_i \phi_g = \prod_{k=0}^{i-1} p_k (1-p_i), \qquad \text{with } p_0 = 1 , \qquad (5)
$$

provided we assume the flux to return to asymptotic form between resonances. From Eqs. (2), (3),'and (5) we have

$$
\phi_g = \left(\prod_{k=1}^n p_k + f - 1 \right) \delta u / f \overline{\xi} \Sigma_p , \qquad (6)
$$

and from Eqs. (5) and (6)

$$
\Sigma_i = \Sigma_i^* C_i \quad ,
$$

where
$$
\Sigma_i^*
$$
 is given by Eq. (1), but now

$$
C_i = \prod_{k=1}^r p_k / \left[1 - \left(1 - \prod_{k=1}^r p_k\right) / f\right] , \quad (7)
$$

which must be simplified.

We require an approximation to C_i that preserves **neutron balance given by Eq. (2) but which does not distinguish between the actual ordering or resonances in the group. We assume that**

$$
C_i \simeq 1 + a \left(\sum_{k=1}^n \epsilon_k - \epsilon_i \right) + b \epsilon_i \qquad , \qquad (8)
$$

where $\epsilon_i = 1 - p_i$. Equation (2) gives

$$
\sum_{i=1}^{n} \epsilon_i \left[1 + a \left(\sum_{k=1}^{n} \epsilon_k - \epsilon_i \right) + b \epsilon_i \right] /
$$
\n
$$
f(1 - \epsilon_i) \simeq \left\{ 1 - \left[1 - \prod_{k=1}^{n} (1 - \epsilon_k) \right] / f \right\}^{-1} - 1 , \qquad (9)
$$

and we require this to be accurate to terms $\epsilon_i \epsilon_k$. When **only one resonance is in the group, we require**

$$
b=\frac{1}{f}-1.
$$

^XA. KEANE and J. P. POLLARD, *Nucl. Sci. Eng.,* **25, 4, 439 (1966).**

Using this choice in Eq. (8) then gives

$$
a=\frac{1}{f}\,-\,\frac{1}{2}\quad.
$$

Equation (8) thus becomes

$$
C_i \approx 1 + \left[\left(\frac{2}{f} - 1 \right) \Sigma_g - \Sigma_i^* \right] \delta u / 2 \overline{\xi} \Sigma_p \quad . \tag{10}
$$

For fine groups, Eq. (10) should replace the corresponding Eq. (1) . As the width of the group is increased, both equations become identical.

J. P. Pollard

Australian Atomic Energy Commission Lucas Heights, N. S. W. Australia

August 1, 1966