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TABLE I 

The / / -Function and its Analytic Approximation 

H ' Hn or I/®. For a simple expression for the first mo-
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TABLE II 

[*] , x 
First Moment of the H-Function; cti = I H(ii)\id\i\ Jo 

ai~ai = f1 1 (rfil + H['l) \id\i 0 

M Deduced from Tables XI and XXXIII of Chandrasekhar3 which are accu-
rate to within 0.005%. 

TABLE ffl 

(b) 1 - U f a = 1) 

c 0 0.2 0.4 0.6 0.8 1.0 

Rafalski 1 0.96306 0.9076 0.8222 0.6716 0 

Pomraning 1 0.96391 0.9137 0.8398 0.7078 0 

H ~ H^22 1 0.96459 0.9158 0.8426 0.7110 0 

Chandrasekhar3 1 0.96476 0.9166 0.8446 0.7147 0 

a i 

ment of the //-function, we found it best to approximate H 
by H ~ i [Mi + #21]. This choice leads to 

This result is compared in Table II with the first moments 
of the //-function ai given by Table XXXIII of Chandra-
sekhar3. 

Equations (9) through (15) when applied to Eqs. (1) and 
(2) constitute the present approximations for the albedos. 
The approximations of_Eqs. (1), (14) and (2), (15) for albedo 
defects 1-/2(1) and l-^4is are compared in Tables HI and IV 
with the corresponding results of Rafalski and Pomraning, 
and with values computed from Tables XI and XXXIII of 
Chandrasekhar3 as a reference. 

This work was done under the supervision of G. Birk-
hoff. Further work on the above method of approximation 
has been done and an extension is in progress. 

I. Abu-Shumays 

c 0 0.1 0.2 0.3 0.4 0.5 

ai 0.5 0.515609 0.533154 0.553123 0.576210 0.603495 
Oti 0.5 0.51553 0.53316 0.55314 0.57624 0.60352 

c 0.6 0.7 0.8 0.9 1.0 

ai 0.636636 0.678674 0.735808 0.825318 1.154701 
ai 0.63665 0.67862 0.7355 0.8242 1.145 
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Cavity and Vacuum Boundary Conditions for 
More-dimensional PN Approximations 

In the June 1966 issue of Nuclear Science and Engineer-
ing, Davis1 has derived vacuum boundary conditions for the 
neutron flux and its adjoint in a PN approximation (N even 
and odd) by variational methods. 

Equivalent boundary conditions have been obtained by 
neutron balance considerations2. A natural approach is to 
start with cavity boundary conditions for exposed surfaces. 
The number of neutrons that enter a surface element dS 
= n - dS per s in a solid angle dQ around 12 is determined 
by neutrons that leave the surface element dSf =n'-dS' in 
the solid angle -0Sl-n)dS/R2 around 12 

(12 -w)~ 
-$ ( r ,0 ) (0-» )dS2 dS= $(r',12)(12-»') — dS-dS' 

BT 

Hence, d£2 is related to dSr by 

dSl = (12-n') • dS'/R2 

(1) 

(2) 

aDeduced from Tables XI and XXXIII of Chandrasekhar 
which are accurate to within 0.005%. 

\ j . A. DAVIS, ' 'Variational Vaccum Boundary Conditions for a 
PN -Approximation,'' Nucl. Sci. Eng., 25, 2, 189 (1966). 

2D. EMENDORFER, "Randbedingungen fur den Neutronenfluz im 
endlichen Zylinder nach der PN -Approximation der Transportgleich-
ung," Nukleonik, 5, 74 (1963). 

TABLE IV 

1 - Ais = 2ai VT^c" 

c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Pomraning 1 0.980 0.957 0.929 0.896 0.856 0.808 0.746 0.660 0.523 0 
Ql ~ Qi 1 0.97814 0.95375 0.92558 0.89270 0.85351 0.80494 0.7434 0.6579 0.5213 0 
Chandrasekhar3 1 0.97830 0.95374 0.92555 0.89266 0.85347 0.80529 0.74345 0.65813 0.52198 0 

aDeduced from Tables XI and XXXIII of Chandrasekhar3 which are accurate to within 0.005%. 




