Letters to the Editors

Radial Buckling Modes Near the Source of an Exponential Column*

A set of data deleted from the published version (1) of the author's thesis (2) has proved quite valuable as an illustrative exercise for students of nuclear reactor engineering. The solution of the Helmholtz "wave" equation for a homogeneous cylindrical exponential column (3) with azimuthally independent source in the $z = 0$ plane is

$$
\boldsymbol{\phi}(r,z) = \sum_{k=1}^{\infty} A_{0k} J_0(\alpha_{0k} r) \sinh \gamma_{0k} (h-z),
$$

where the buckling eigenvalues are $B^2_{0k} = \alpha^2_{0k} - \gamma^2_{0k}$ and the A_{0k} depend upon the source conditions.

TABLE I OBSERVED RELATIVE FLUX DISTRIBUTION

Radius (in.)	Observed total foil activation (counts/min)
0	18.740×10^{4}
1	17.785×10^{4}
$\overline{2}$	15.455×10^4
3	13.161×10^{4}
$\overline{4}$	10.675×10^{4}
5	8.297 \times 10 ⁴
6	6.191 \times 10 ⁴
7	4.575×10^{4}
8	3.232 \times 10 ⁴
9	2.188×10^{4}
10	1.318×10^{4}
$R(r) = 1.201^{\pm 0.025} \times 10^5 J_0 \left(\frac{2.405}{2.405} \cdot 0.2111^{\pm 0.0035} r \right)$	
$+ 4.62^{\pm0.25}\times10^4 J_0\left(\frac{5.520}{2.405}\cdot 0.2111^{\pm0.0035}\ r\right)$	
	$+ \left. \; 1.62^{\pm0.16}\times \; 10^4 \, J_0 \left(\frac{8.654}{2.405} \, \cdot \, 0.2111^{\pm0.0035} \; r \right) \right.$

Clearly, near a source of the column as in Figure 3, of ref. 1, the radial portion, $R(r)$, of the general solution should show the higher radial buckling modes, α_{0k} , $k = 1, 2, 3, \cdots$ The boundary condition that $R(\rho + d) = 0$ is satisfied by containing a series of J_0 Bessel functions such that the kth zero of the kth term is at $\rho + d$, where *d* is the extrapolation distance to be determined.

The radial flux distribution in a natural uranium column

with $\rho = 10.5$ in., 4.1 in. from the source plane, was observed by foil activation techniques. The Los Alamos least-squares computer code *(4)* was used to separate the higher modes by fitting the function

$$
R(r) = \sum_{k=1}^n b_k J_0(\alpha_{0k} r)
$$

where the constraining boundary condition is met by

FIG. 1. Radial flux distribution, 4.1-in. level

setting

$$
\alpha_{0k} = \frac{j_{0k}}{j_{01}} \alpha
$$

leaving

$$
\alpha = j_{01}/(\rho + d)
$$

the only free parameter in the argument. The j_{0k} are the kth zeros of the J_0 Bessel function.

Table I lists the typical corrected observations of γ -counts/min from the foils (U²³⁵, U²³⁸ or natural U) as well

^{*} Work performed under the auspices of the U. S. Atomic Energy Commission.

as results of the least squares fit. Figure 1 graphically displays the three $(n = 3)$ modes determined by the computer. Note that in Fig. 1 the residuals are plotted as dots leading to the suspicion of the existence of another mode. The student should be able to justify, on a statistical basis, the inability of the computer program to resolve a fourth mode.

REFERENCES

- 1. С. G. Снеzем, *Nucl. Sci. Eng.* 8, 652-669 (1960).
- 2. C. G. CHEZEM, "Neutron Flux Parameters of a Uranium Metal Exponential Column," thesis, Oregon State College, June 1960 (University Microfilms No. 60- 3331).
- 3. S. GLASSTONE AND M. C. EDLUND, The Elements of Nu*clear Reactor Theory,* p. 285 ff. Van Nostrand, Princeton, New Jersey, 1952; R . L. MURRAY, *Nuclear Reactor Physics,* p. 102 ff. Prentice-Hall, Englewood Cliffs, New Jersey, 1957.
- *4.* R . H . MOORE, *Nucl. Sci. Eng.* 12, 446 (1962).

CURTIS G. CHEZEM

University of California Los Alamos Scientific Laboratory Los Alamos, New Mexico Received January 14, 1963 Revised June 24, 1963