ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
PNNL team creates “super alloy” for nuclear reactors
Pacific Northwest National Laboratory has reported that researchers there have created a tough new alloy that has potential use in advanced nuclear reactors and that is not dependent on a difficult-to-get element. The research team, which included materials scientists Isabella van Rooyen, Subhashish Meher, and Steven Livers, started its experiments with the highly durable nickel-chromium-cobalt-molybdenum “super alloy” known as Inconel 617 (IN617).
You are exposed to ionizing radiation every day from natural and human-made sources.
Natural radiation comes from the soil, which contains a number of radioactive elements such as uranium, radium, and thorium. High-energy radiation also reaches Earth from far in outer space.
Human-made radiation is the greatest source of exposure today, primarily in medical imaging and procedures. In fact, medical uses of radiation account for 98% of exposure to artificial radiation. In contrast, nuclear power plants account for less than 1% of exposure.
Is radiation harmful?
Like many tools, radiation brings humanity a number of significant benefits. Cancer treatment, pest control, smoke detection, medical sterilization, space travel, clean energy— these are ways that nuclear science and technology improve our lives.
Handled correctly, radiation is a safe and powerful tool.
Using radiation safely
How much radiation you receive depends on three things:
Time
The amount of radiation exposure you receive increases the longer you are near the source. Radiation workers are exposed to radiation every day, so they wear dosimeters—devices that measure the amount of radiation a worker receives as they work. Very few people who do not work with radioactivity spend enough time near a powerful source.
Distance
Distance can be used to reduce exposure. The farther away you are from a radiation source, the less your exposure. In fact, doubling the distance from a source of radiation decreases the exposure rate to 1/4 the original exposure rate.
Shielding
Shielding is the placement of a material that reduces radiation between the radiation source and you, like the lead apron a radiologist places over your body.
Different kinds of radiation require different absorbers
Radiation safety often involves shielding--placing a radiation absorbing material near the radiation source.
α ALPHA – can be stopped after traveling through about 1.2 inches of air, about 0.008 inches of water, or a piece of paper. Your skin provides adequate shielding because alpha particles can’t penetrate it. Alpha particles can be very harmful if inhaled or ingested, though.
β BETA – – Beta particles are more penetrating than alpha particles. They travel farther in air than alpha particles, but can be stopped by a layer of clothing or by a layer of a metal.
γ GAMMA: Thick, dense materials are necessary to shield from gamma rays. The higher the energy of the gamma ray, the thicker the shield must be. X-rays also require thicker shielding. This is why x-ray technicians often give patients receiving x-rays a lead apron to cover other parts of their body.
The Nuclear Regulatory Commission regulates commercial nuclear power plants and other uses of nuclear materials, such as in nuclear medicine, through licensing, inspection and enforcement of its requirements.
Learn about the effects of radiation
Learn more about radiation
Last modified July 19, 2021, 3:15pm CDT