ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Nuclear energy holds the atoms that make up our universe together. This energy is released both when larger atoms split apart, undergoing fission, and when smaller atoms combine together, known as fusion. The amount of energy released in fission is tremendous -- millions of times more than other forms of energy. Fusion releases four times as much energy as fission. In fission or fusion, all of that energy is released using reactors.
Nuclear Fission provides about 10% of the world’s electricity, powers naval vessels around the world, and has powered space missions.
The energy released by fission is a million times greater than the chemical energy released by combustion, so a small amount of nuclear fuel, usually uranium, produces an enormous amount of heat. Over four hundred nuclear power plants around the world produce 400 GW of electricity, enough for 300 million US homes.
The fission reactors at each of these nuclear power plants create steam that turns a turbine to generate electricity, just as coal and gas plants do. Find out how nuclear reactors of the present and future work.
Pressurized Water Reactors and Boiling Water Reactors
Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are the most common reactors in the world today. In both PWRs and BWRs, light enriched uranium fuel, arranged in the reactor's core, heats water.
Pressurized Water Reactor
PWRs use high pressure to prevent water from turning to steam in the core; steam is created in a secondary loop using a steam generator.
Boiling Water Reactor
BWRs generate steam directly in the core of the reactor, eliminating the need for some equipment, but resulting in radioactive steam in the turbine.
Control rods, neutron absorbing movable rods, are used in both reactors to control the chain reaction caused by neutrons from fissioning atoms being released and creating more fissions. By absorbing neutrons, the control rods sustain the chain reaction and keep it at an efficient rate.
Small Modular Reactors (SMRs) and Microreactors
SMRs and microreactors gained significant attention in recent years. These reactors are small in terms of size and energy production, compared to large existing reactors, so they can be constructed in a factory. When more energy production is needed, more SMRs can be added.
There are a number of significant advantages to SMRs and microreactors.
SMRs and microreactors may be small, but they can utilize a wide variety of nuclear technologies and open new markets at lower cost. The first non-water based microreactor license application was submitted in March of 2020; the Nuclear Regulatory Commission certified the reactor design in August 2022. Other SMR and microreactor designs are in development or operation around the world, including floating SMRs in Russia, heat generating reactors in China, and a variety of other concepts.
Non-Light Water Reactors (LWRs) and Advanced Reactors
Advanced reactors build on the lessons learned from LWRs and non-LWRs and offer the potential of more economic, safer, diverse, and efficient ways to generate clean energy for the future. Water based and non-water based advanced reactors are under development all over the world and significant progress towards widespread use is expected in this decade.
Learn more about fission
The Tokamak and its plant systems housed in their concrete home. An estimated one million parts will be assembled in the machine alone.
Nuclear fusion has the potential to provide large amounts of energy and has been the focus of billions of dollars in international scientific collaboration. Fusion research and development has yet to achieve breakeven power production (producing more power than consumed), and numerous public and private organizations are pursuing different forms of technology. Three approaches are Magnetic Confinement Fusion (MCF), where magnets compress and contain a heat fusion plasma; Intertial Confinement Fusion (ICF), where lasers strike a fuel target to create the conditions for fusion; and Magnetized Target Fusion, a combination of elements of MCF and ICF.
Learn more about fusion
Last modified May 15, 2023, 1:38pm CDT