Waste Management


Siting factors for geological disposal facility set out

March 2, 2020, 9:52AMRadwaste Solutions

Following a comprehensive and open national consultation, the United Kingdom’s Radioactive Waste Management (RWM) organization on February 18 published its approach to evaluating possible sites in England and Wales for a deep geological disposal facility. A wholly owned subsidiary of the U.K. government’s Nuclear Decommissioning Authority, RWM will be responsible for the siting, construction, operation, and eventual closure of a disposal facility for the United Kingdom’s high-­ and intermediate-­level radioactive waste.

IAEA project on research reactor spent fuel management options

March 1, 2020, 10:35PMRadwaste SolutionsFrances M. Marshall

International Atomic Energy Agency member states operating or having previously operated a research reactor are responsible for the safe and sustainable management of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). Management includes storage and ultimate disposal of RRSNF, or the corresponding equivalent waste generated and returned following reprocessing of the spent fuel. Currently, there are 259 research reactors operating, planned, or under construction around the world [1]. An additional 147 research reactors are in extended or permanent shutdown, or under decommissioning.

One key challenge to developing general recommendations for RRSNF management options lies in the diversity of spent fuel types, locations, and national or regional circumstances, rather than mass or volume alone, particularly since typical RRSNF inventories are relatively small. Currently, many countries lack an effective long-term strategy for managing RRSNF. Many research reactor organizations know they have responsibility for the spent fuel, however, they do not know how to decide among multiple options for its management. A methodical review and compilation of technology options for RRSNF management is needed.

SuperGel to the Rescue

February 28, 2020, 7:55AMRadwaste SolutionsArgonne National Laboratory

The gel is applied to an area (left), where it is allowed to work for two to three hours before being removed. The final activity of the cleaned area (right) was counted using HPGe and Ludlum alpha/beta radiation detectors. Photos courtesy of ANL.

Current techniques for radiological decontamination often involve debasing or demolishing structures to contain contaminated dust and haul debris away. This is a costly method of decontaminating buildings and structures. If, however, effective nondestructive methods can be found, significant savings are possible. One such method, based on new research from engineers at the Department of Energy’s Argonne National Laboratory in Lemont, Ill., is now available.