Research & Applications


IAEA and IsDB collaborate to increase cancer care

May 11, 2023, 7:00AMNuclear News
The IAEA is helping expand the use of nuclear medicine to control cancer in developing nations. (Photo: P.Pavlicek/IAEA)

With funding from the Islamic Development Bank (IsDB), the International Atomic Energy Agency is working to help developing countries scale up their cancer care capacities in radiotherapy, the agency said. A multilateral development bank, IsDB works to improve lives by promoting social and economic development in 57 member states and Muslim communities around the world.

Research quantifies the health and climate value of the U.S. nuclear fleet

May 9, 2023, 7:00AMNuclear News
A still from a video posted by MIT that illustrates the air pollution that would be generated over one year by a grid with no nuclear power. (Credit: MIT)

Nuclear power is the single largest source of clean energy in the United States, but how can the value of “clean” be measured? Two recent reports by researchers at the Massachusetts Institute of Technology and Pacific Northwest National Laboratory, respectively, measured the clean energy benefits of nuclear energy in different ways: the benefits to human health from the air pollution avoided and the future economic value of avoided carbon emissions.

ORNL-developed AR tool will help workers “see” radiation

May 8, 2023, 9:30AMNuclear News
A still image from an ORNL video demonstrating the VIPER technology. (Credit: ORNL)

Researchers at Oak Ridge National Laboratory developed a method of using augmented reality (AR) to create accurate visual representations of ionizing radiation, and that technology has just been licensed by Teletrix, a Pittsburgh, Pa.-based firm that develops simulators to train radiological workers and radiological control technicians. ORNL announced the news on May 4.

Savannah River lab qualified to provide safeguards reference materials to IAEA

May 3, 2023, 12:03PMNuclear News

The International Atomic Energy Agency’s Department of Safeguards recently qualified Savannah River National Laboratory to produce microparticle reference materials that can be used to evaluate measurement quality in support of the Network of Analytical Laboratories (NWAL) and the IAEA’s verification mission. SRNL announced the development on April 25.

The NASEM report: Laying the foundation for a nuclear-powered, low-carbon grid

May 2, 2023, 12:00PMNuclear News
This slide on the right from the consensus committee’s public briefing identifies 10 core variables that are important to the success of advanced reactor deployments. (Image: NASEM, Laying the Foundation for New and Advanced Nuclear Reactors in the United States)

Richard Meserve, who for more than two years chaired the National Academies of Sciences, Engineering, and Medicine (NASEM) Consensus Committee on Laying the Foundation for New and Advanced Nuclear Reactors in the United States, introduced its 300-page report on April 27 during a public briefing.

SHINE to provide radiation testing for aerospace and defense industries

April 28, 2023, 9:30AMRadwaste Solutions
SHINE’s Mo-99 production building under construction in October 2022. (Photo: SHINE)

Fusion development company SHINE Technologies announced that it will begin offering radiation effects testing in a dedicated facility on the company’s Janesville, Wis., campus later this year. SHINE will use high-energy fusion neutrons to test mission-critical components that are susceptible to radiation-harsh environments on behalf of its aerospace and defense customers.

Atoms: Space travel plans

April 26, 2023, 3:00PMNuclear News

Earthbound air travel can be a hassle, even for careful planners. So if you’re heading to the Moon or beyond, it’s time to shift your planning into hyperdrive. Our advice, when there’s no guidebook, no proven vehicle, and your destination is a moving target? Don’t forget to pack your nuclear power bank.

Equipped with armor tiles, DIII-D takes “negative triangularity” plasma to new highs

April 26, 2023, 7:00AMNuclear News
A side-by-side comparison of a standard plasma configuration (at left) and the plasma created during the negative triangularity campaign at DIII-D, which was made possible by the installation of a temporary divertor region. (Image: General Atomics)

The DIII-D National Fusion Facility in San Diego, Calif., has completed a monthlong research campaign using a negative triangularity plasma configuration inside its fusion tokamak and produced initial data that “appear very encouraging,” according to an April 24 news release from General Atomics (GA), which operates the Office of Science user facility on behalf of the Department of Energy. Full experimental results on “the highest-powered negative triangularity experiments in the history of the U.S. fusion research program” are expected this summer, according to GA.

Brookhaven now capable of processing Ac-225 on site

April 24, 2023, 12:00PMNuclear News
A member of Brookhaven’s MIRP team in the new hot cell area used for processing targets to make medical isotopes such as actinium-225. (Photo: BNL)

A refurbished hot cell laboratory is allowing the Department of Energy’s Brookhaven National Laboratory to streamline the production and shipment of actinium-225 to support clinical trials of cancer therapies.

Share:

Dynamic radioisotope power system development for NASA missions

April 21, 2023, 3:19PMNuclear NewsSal Oriti, Ernestina Wozniak, and Max Yang
The multimission radioisotope thermoelectric generator for NASA’s Mars 2020 Perseverance rover is tested at NASA’s Kennedy Space Center in 2020. The choice of an MMRTG as the rover’s power system gave mission planners significantly more flexibility in selecting the rover’s landing site and in planning its surface operations. (Photo: NASA)

Under the Radioisotope Power Systems Program, NASA and the Department of Energy have been advancing a novel radioisotope power system (RPS) based on dynamic energy conversion. This approach will manifest a dynamic RPS (DRPS) option with a conversion efficiency at least three times greater than a thermoelectric-based RPS. Significant progress has recently been made toward this end. A one-year system design phase has been completed by NASA industry partner Aerojet Rocketdyne, which resulted in a DRPS with power of 300 watts-electric (We) with convertor-level redundancy. In-house technology development at the NASA Glenn Research Center (GRC) has demonstrated the conversion devices in relevant environments and has shown all requirements can be met. Progress has also been made on the control electronics necessary for dynamic energy conversion. Flight-like controllers were recently upgraded and achieved an 11-percentage-point increase in efficiency. Control architectures have been developed to handle the multiconvertor arrangements in the latest DRPS design. A system-level DRPS testbed is currently being assembled that will experimentally demonstrate the DRPS concept being pursued.

NRC rejects hybrid approach to fusion regulation in a vote for clarity

April 19, 2023, 9:34AMNuclear News

The Nuclear Regulatory Commission announced on April 14 that it will regulate fusion energy systems using a framework based on the agency’s 10 CFR Part 30 process for licensing byproduct material facilities—such as particle accelerators—rather than 10 CFR Parts 50 and 52, which are used to license utilization facilities like fission power reactors. The commission’s decision means that future fusion energy facilities could be regulated by Agreement States acting with guidance from the NRC.

The Argonaut mission: Paving the way for European nuclear use in space

April 18, 2023, 7:00AMNuclear NewsGrzegorz Ambroszkiewicz, Alexander Getimis, and Paloma Villar

Long-duration missions with limited solar exposure need a reliable power source to operate. This makes nuclear power sources (NPSs) an attractive alternative to solar energy for such missions. The implementation of the ESA Safety Policy on the Use of Nuclear Power Sources by the European Space Agency’s Independent Safety Office (ISO) provides a framework for ensuring the safe use of NPSs and sets a standard for future ESA missions. This article provides an overview of how the ISO is implementing the policy in the development and operation of the Argonaut mission, which serves as a valuable case study for understanding the practical application of the ESA safety policy and the importance of ensuring the safe use of NPSs in space.

Atoms for space

April 17, 2023, 12:01PMNuclear NewsCraig Piercy

Craig Piercy
cpiercy@ans.org

Dear member:

Hello from our temporary headquarters in Downers Grove, Ill. Yes, after two years of twists and turns, we have finally completed the sale of our legacy La Grange Park property and are in the process of building out our new space, which will be ready for occupancy later this year.

I know many of you have memories made in “the Schoolhouse,” which served as American Nuclear Society headquarters for nearly 50 years. At one time during the golden age of paper recordkeeping, it housed nearly 100 employees. As the business of running a professional society evolved with the information age, however, so too did our workforce and space needs. Stately though it was, 555 Kensington Avenue proved simply too expensive to heat, cool, mow, plow, and otherwise maintain to an acceptable standard.

World Quantum Day: It’s here, there, and everywhere

April 14, 2023, 6:57AMNuclear News

The organizers of World Quantum Day, celebrated annually on April 14, want to shift how people think about quantum physics. What can seem like a bafflingly abstract theory tinged with science fiction is actually a fundamental description of reality, the basis of technologies we use every day, and a foundation for future applied science. Whether it’s seen through the lens of fact or fiction, quantum physics has an undeniable “cool” factor, and quantum scientists working in different fields—including fusion energy—are embracing quantum coolness to spread awareness about real science.

Nuclear science and technology in space

April 12, 2023, 12:00PMNuclear NewsSteven Arndt

Steven Arndt
president@ans.org

Anyone who has heard me speak about the American Nuclear Society recently knows that I like to remind people of the ANS mission and vision statements. I invite people to read the exact words: Our mission is to “advance, foster, and spur the development and application of nuclear science, engineering, and technology to benefit society”; our vision is to see “nuclear technology . . . embraced for its vital contributions to improving peoples’ lives and preserving our planet.”

The meaning behind these statements is that ANS is here to help the profession save the world. I take that seriously: We are here to save the world. This month, Nuclear News is focusing on nuclear science, engineering, and technology’s role in space exploration both now and in the future. When we look at our mission, this is very fitting. The use of nuclear power systems in space goes back almost to the start of ANS. In 1961, the Transit 4A satellite became the first U.S. spacecraft to be powered by a radioisotope thermoelectric generator (RTG). Combined with solar cells, RTGs have been used on the Moon and on satellites and to explore the solar system and beyond. One of the interesting things about these power sources is that they were used to provide both provide electricity and heat to keep the systems they were supporting from freezing. Since then, additional nuclear systems have been designed and developed—including fission power reactors and nuclear thermal propulsion—that will provide significantly more power and faster space journeys.

Challenges facing our space nuclear future

April 11, 2023, 12:00PMNuclear NewsSara M. Sanders, Mikaela Blood, and Lisa D. May

Lisa D. May

Mikaela Blood

Sara M. Sanders

At the advent of space nuclear power in the 1960s, the combination of fundamental nuclear principles and first-of-its-kind spacecraft technology were the largest barriers to entry. In the modern era, however, nuclear power production and space technology have matured industries and no longer present major challenges. These days, the biggest hurdles are advanced flexible technology development, regulations and policy, and public perception, and these issues must be successfully navigated to clear the way for a nuclear future in space.

New GAO report focuses on fusion

April 7, 2023, 7:02AMANS Nuclear Cafe

The latest advances in nuclear fusion, the remaining challenges, and proposals to overcome those challenges are the focus of a new report, Fusion Energy: Potentially Transformative Technology Still Faces Fundamental Challenges, published by the Government Accountability Office.

How has student research in nuclear thermal rockets shaped your career plans?

April 6, 2023, 3:00PMNuclear NewsMiguel Alessandro Lopez

Miguel Alessandro Lopez

At the University of Rhode Island, I initially enrolled as a candidate for an accelerated track to earn bachelor’s and master’s degrees in mechanical engineering, with a minor in nuclear engineering. My objective was to concentrate on reactor power design and join efforts to make nuclear energy safer, more efficient, and less stigmatized.

My plans changed after I attended a guest presentation on high-performance nuclear thermal propulsion (HP-NTP) led by Michael Houts, manager of NASA Nuclear Research at Marshall Space Flight Center. He posted his email address on one of the last slides, so I took a chance and contacted him about potential research opportunities and thesis work. As it turned out, that one little email ultimately led to four NASA-sponsored design projects at URI—two are complete, and two are in progress—as well as my thesis. My research has been on HP-NTP, specifically the centrifugal nuclear thermal rocket (CNTR) design. In that design, liquid uranium is heated to extremely high temperatures in a cylinder that is rotated between 5,000 and 7,000 revolutions per minute as liquid hydrogen passes through the center of the cylinder, where it is heated and expanded, exiting as a propellant while the liquid uranium is retained by centrifugal force.

Space needs a few good nukes

April 6, 2023, 7:00AMNuclear NewsJames Conca

We might actually be going back to the Moon . . . and then, on to Mars.

The Artemis program has been developed by NASA to accomplish this. Using innovative technologies, NASA will establish the first long-term human presence on the Moon, allowing a team of astronauts to explore more of the lunar surface than ever before.

With what is learned from the Artemis missions, NASA will take the next giant leap: sending the first astronauts to Mars. This goal is for scientific discovery and the economic and technological benefits that have always come from the space program, but it will also inspire a new generation of explorers: the Artemis Generation.