Proposed DOE-EM funding would advance technology development

April 28, 2022, 9:30AMNuclear News
Savannah River National Laboratory recently oversaw a demonstration of a new radiological inspection technology called iGART, a ground-based robot that conducts radiological and nuclear inspections. The DOE’s Office of Environmental Management used the demonstration at the Savannah River Site to determine if there is an application value for iGART at SRS or other EM sites. (Photos: DOE)

The Department of Energy’s Office of Environmental Management is looking to continue developing technology to aid in site cleanup activities if its fiscal year 2023 budget request is approved. The $7.64 billion budget request includes about $25 million for EM’s Technology Development Office.

Robotics for Plant Maintenance: Now and in the Future

November 20, 2020, 3:07PMNuclear NewsTobias Haswell

Diakont technicians prepare an NDE inspection robot for deployment into a diesel tank. Photos: Diakont

Robotics and remote systems have been used for supporting nuclear facilities since the dawn of the atomic age. Early commercial nuclear plants implemented varying levels of automation and remote operation, such as maintenance activities performed on the reactor pressure vessel and steam generators. Over the past several decades, there has been a steady progression toward incorporating more advanced remote operations into nuclear plants to improve their efficiency and safety. One of the primary forces driving the adoption of robotic tooling in U.S. nuclear power plants is money.

The economic model for the U.S. operating fleet has changed considerably over the past 10 to 12 years. Regulations in the nuclear industry have rarely decreased and, more often than not, have increased. This has led to nuclear plants in certain energy markets being hindered financially and thus needing to find ways to optimize their operations to do more with the resources they have. At the same time, the reliability and flexibility of robotics and automated systems have been increasing while their costs have been decreasing, making robotic systems much safer and more available to use. This has helped drive utilities to explore new ways of using robotics to overcome the obstacles they are facing. One of the obstacles that power plants have been tackling has been shortening the duration of their refueling outages to decrease their costs and increase their revenue.

Dixon and Hafen: An update on robotics and plant maintenance

November 13, 2020, 2:35PMNuclear NewsRick Michal

Joe Dixon

Hubert Hafen

Wälischmiller Engineering (HWM), of Markdorf, Germany, has joined forces with NuVision Engineering (NVE) to form NuVision-Wälischmiller under parent company Carr’s Engineering. The NVE-HWM team develops, demonstrates, and deploys engineered remote systems and robotics to meet the high safety standards, quality requirements, and challenging demands of the nuclear industry.

HWM specializes in remote-handling and robotic solutions for hazardous applications. Since 1946, HWM has been delivering a range of remote-handling solutions, including precision manipulators, tools, and controllers, to the nuclear industry.

NVE, founded in 1971, is headquartered in Pittsburgh, Pa., with major operational facilities in Charlotte, N.C. The company delivers engineered solutions and services to its customers in the nuclear markets of commercial power, research, isotope production, and government cleanup sectors. NuVision develops, demonstrates, and deploys technology-based solutions that help extend the life and safe operation of power plants, improve new plant designs, and remediate government-owned legacy waste sites.

Joe Dixon is the robotics director at NVE. For nearly 20 years, he has provided solutions for the global nuclear industry and has conceived, designed, fabricated, deployed, and managed teams for advanced robotics, isotope production, scientific research, decommissioning, energy production, process maintenance, and remote handling. Having worked on large projects around the world, Dixon is one of the industry’s leaders in remote-handling and robotics technologies.

Hubert Hafen is the chief technology officer for HWM. With more than 30 years of experience in the nuclear industry, Hafen has served as chief engineer and project manager for a large number of international remote-handling projects, such as remote-handling equipment for the decommissioning of the Greifswald nuclear power plant in Germany, the decommissioning of the reprocessing plant in Karlsruhe, Germany, planning for the remote equipment for the ITER project, and several remote-handling projects in Japan, Russia, China, the United Kingdom, France, and Germany. His ability to present clients with problem solving has made him renowned in the robotics world.

Dixon and Hafen talked recently with Nuclear News editor-in-chief Rick Michal about what is new in robotics and remote-handling systems.

Robotics at Palo Verde

October 30, 2020, 2:09PMNuclear NewsRick Michal

The Zephyr system uses probes for steam generator inspections. Photos: APS

The Palo Verde Nuclear Generating Station, a three-unit pressurized water reactor plant operated by Arizona Public Service Company, has started using an inspection technology relatively new to the nuclear industry. The technology, called smart pigs (an acronym for “piping inline gauges”), has previously been employed by oil and gas companies for inspecting and cleaning underground pipes. After testing and analyzing smart pig products from several companies, Palo Verde’s underground piping consultant, Dan Wittas, selected a smart pig suitable for navigating the tight-radius bends in the plant’s spray pond piping. The spray pond system consists of piping, a pump, and a reservoir where hot water (from the Palo Verde plant) is cooled before reuse by pumping it through spray nozzles into the cooler air. Smart pigs work by using the water’s flow through the piping to move an inspection tool within the pipe itself. The technology replaces the previous method of pipe inspection, in which various relatively small sections of piping were unearthed and directly inspected, and were considered to be representative examples of the overall piping condition. In contrast, the smart pigs obtain corrosion levels for the length of piping traveled through and allow a corrosion baseline to be established.

Ratliff and Harris: Innovation for safety and reliability

October 23, 2020, 3:14PMNuclear NewsSusan Gallier

Ratliff

Harris

When Floyd Harris began working at Duke Energy’s Brunswick nuclear plant about 24 years ago as a radiation protection technician, robotics and remote monitoring were considered tools for radiation protection and nothing more. Now, teams from across the site, including engineering, maintenance, and operations, rely on the system of robots and cameras Harris is responsible for. “If you want to put those technologies under one umbrella,” says Harris, who now holds the title of nuclear station scientist, “it would be monitoring plant conditions.”

That monitoring is critical to effective plant maintenance. As Plant Manager Jay Ratliff explains, the goal is to “find a problem before it finds us” and ensure safety and reliability. Nuclear News Staff Writer Susan Gallier talked with Ratliff and Harris about how robotics and remote systems are deployed to meet those goals.

At Brunswick, which hosts GE-designed boiling water reactors in Southport, N.C., ingenuity and hard work have produced a novel remote dosimetry turnstile to control access to high-radiation areas, an extensive network to handle data from monitoring cameras, rapid fleetwide access to camera feeds to support collaboration, and new applications for robots and drones.