Setting the nuclear theme

October 17, 2024, 7:01AMNuclear NewsCraig Piercy

Craig Piercy
cpiercy@ans.org

Twice a year, the ANS president and I work with the general chair of our next national meeting to set the theme of the event.

It’s no easy process. Sure, one can be anodyne, picking anything with “collaborations” or “partnerships” in it—perfectly acceptable but easily forgotten. “Partnerships for Innovation.” Yay! Wait, what?

The true goal is to capture the zeitgeist, the vibe that can frame properly a fulsome conversation around the state of applied nuclear science and technology at this particular moment in time. Yes, our theme is intended largely for the opening plenary, but I’ve often seen speakers use it as a conversational leverage point in the technical and executive sessions that follow.

NSUF awards 19 Rapid Turnaround Experiments

September 27, 2024, 10:07AMNuclear News

The Department of Energy’s Office of Nuclear Energy has awarded 19 experimental proposals access to Nuclear Science User Facilities (NSUF) under the 2024 “third call” for Rapid Turnaround Experiment (RTE) projects. In total, the awards are valued at about $1 million and were granted to 19 principal investigators from 11 institutions, including universities and industry researchers.

INL readies new Sample Preparation Laboratory

September 13, 2024, 7:01AMNuclear News
The outside of the Sample Preparation Laboratory at the Materials and Fuels Complex at Idaho National Laboratory. (Photo: INL)

Idaho National Laboratory has completed substantial construction of the first new hot cell facility at the lab site in 49 years—a Sample Preparation Laboratory (SPL) that will accelerate research, development, and qualification of structural nuclear materials for both existing and new nuclear reactors. In an announcement last week of the milestone and the ribbon-cutting ceremony held to mark it, INL said the SPL is expected to be fully operational in 2025.

PNNL seeks high-energy neutrons from SpaceX launch of Polaris Dawn

September 12, 2024, 3:00PMNuclear News
Understanding how several different metals—such as the contents of PNNL’s space-bound cube—react to radiation in space will help scientists understand the potential impact of radiation on space travelers. (Photo: Eddie Pablo/PNNL)

When a SpaceX rocket lifted off from Kennedy Space Center on September 10 (see video here), sending a crewed commercial mission into low Earth orbit, an experiment designed by Pacific Northwest National Laboratory was onboard. Several high-purity metal samples will orbit Earth and absorb cosmic radiation for five days—including that from the Van Allen radiation belt—to help the lab answer questions about the radiation environment for manned space missions, according to a news release from PNNL.

DOE awards first Super Rapid Turnaround Experiments for nuclear energy tech

August 23, 2024, 9:30AMNuclear News

The Department of Energy’s Office of Nuclear Energy for the first time has awarded access to Nuclear Science User Facilities (NSUF) for Super Rapid Turnaround Experiments (RTEs). The 13 selected research projects, announced August 21, will examine the performance of nuclear fuels and materials for existing and planned nuclear power reactors. The project teams include 13 principal investigators collectively representing six universities, three national lab facilities, and one industry partner. They are getting no-cost access to capabilities valued at about $1.8 million.

Texas A&M researchers identify key factors of radiation damage to reactors

November 22, 2021, 7:07AMNuclear News
[CLICK IMAGE TO ENLARGE] A comparison between MOOSE results and the analytical solutions for the fractions of point defects in an irradiated spherical Ni grain with a 500 nm radius. The grain boundary/surface at x = 500 nm is assumed perfect and neutral. (Source: From Frontiers in Materials paper "Surface and Size Effects on the Behaviors of Point Defects in Irradiated Crystalline Solids")

By using a combination of physics-based modeling and advanced simulations, Texas A&M University researchers say they have found the key underlying factors that cause radiation damage to nuclear reactors, which could provide insight into designing more radiation-tolerant, high-performance materials.