UKIFS takes reins of the U.K.’s STEP fusion program

November 6, 2024, 7:01AMNuclear News
Chapman (left) and Methven at the West Burton power station. (Photo: UKIFS)

Leadership of the United Kingdom’s STEP (Spherical Tokamak for Energy Production) fusion program has transitioned to U.K. Industrial Fusion Solutions Ltd. (UKIFS), a wholly owned subsidiary of the U.K. Atomic Energy Authority (UKAEA). UKIFS was established in February 2023 to lead a public-private partnership that will design, build, and operate the STEP prototype fusion energy plant in Nottinghamshire in England’s East Midlands region.

What’s different about Pacific Fusion’s pulsed magnetic concept?

October 30, 2024, 7:00AMNuclear News
Image: Pacific Fusion

With more than 40 fusion development companies announcing plans and funding, it’s hard for a newcomer to stand out, but Pacific Fusion is giving it a try. The company, based in Fremont, Calif., was founded in summer 2023 and emerged from “stealth mode” last Friday with $900 million in committed funding from investors, a team that includes people directly involved in the successful ignition experiments at Lawrence Livermore National Laboratory’s National Ignition Facility (NIF), and a technical paper that makes a case for a pulsed magnetic fusion approach to fusion energy.

Australian undergrads are crafting a tokamak device

October 28, 2024, 3:00PMNuclear News
The cross-disciplinary AtomCraft team. (Photo: University of New South Wales)

Commercial nuclear power is illegal in Australia, and it has been since the 1990s. This past June, however, the country’s main opposition party announced plans to build seven commercial nuclear reactors in the 2030s and 2040s on sites presently occupied by aging coal-fired plants—should the party’s Liberal–National Coalition win power in federal elections next year. This statement has reignited a public debate regarding the potential role of nuclear energy in Australia.

Colorado State begins constructing laser lab as public-private research hub

October 28, 2024, 12:03PMNuclear News
Colorado State University hosted a ground-breaking event for a new laser research facility being built in partnership with Marvel Fusion at the university’s Foothills Campus. (Image: CSU)

In the foothills of the Rocky Mountains on the outskirts of Fort Collins, Colo.—home to Colorado State University—work began this month on a new laser facility funded by a public-private partnership. The private portion is $150 million from Marvel Fusion, announced in August 2023, while $12.5 million—the latest funding for CSU from the Department of Energy’s Office of Fusion Energy Sciences (FES)—will support the new facility as part of LaserNetUS, a laser research network operated by DOE-FES to provide access to laser facilities for multidisciplinary researchers from the United States and abroad.

DOE issues $49 million to shift national lab research toward fusion energy vision

October 10, 2024, 12:00PMNuclear News

The Department of Energy announced yesterday a total of $49 million in funding for 19 projects in the Foundational Fusion Materials, Nuclear Science, and Technology programs that span functional and structural materials R&D for heating technology, magnet technology, blankets, fuel cycle, and first wall research.

Senators probe global competition in fusion energy deployment

September 25, 2024, 7:00AMNuclear News
A still shot from the Senate ENR Hearing to Examine Fusion Energy Technology Development.

Hours before the Senate Committee on Environment and Natural Resources (ENR) opened a scheduled September 19 hearing on fusion energy technology development, CNN published an article titled “The US led on nuclear fusion for decades. Now China is in a position to win the race.” The article was entered into the hearing record, but senators had already gotten the message.

Dust: Trapped by a laser or threatening ITER, it’s making headlines

September 17, 2024, 7:02AMNuclear News
An optically trapped microparticle in high vacuum is visible as a white dot levitated between two lenses, which are used to focus and collect invisible infrared laser light used to trap the particle. (Photo: DOE/Yale Wright Lab)

Start talking about dust in a vacuum, and some people will think of household chores. But dust has featured in recent nuclear science and engineering headlines in curious ways: ITER is deploying oversized dust covers inspired by space satellites in the south of France, while at Yale University, researchers have watched every move of a dust-sized particle levitating in a laser beam for telltale twitches that indicate radioactive decay.

General Atomics R&D team recognized for contributions to NIF’s fusion ignition

August 13, 2024, 9:43AMNuclear News
Members of the Metrology Research and Development team working with the 4Pi system in a clean room at GA headquarters. (Photo: General Atomics)

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has achieved fusion ignition at least five times, each time by directing its 192 high-powered lasers on a capsule containing a tiny, 2-millimeter target filled with hydrogen fuel. Not every shot achieves ignition, however. Tiny imperfections in the targets can mean fizzle, not fusion. But each of the targets used in successful experiments to date have something in common: they were characterized and selected by the 4Pi Integrated Metrology System, a new measurement system developed by General Atomics. Now, the team behind that system is being recognized.

GA announced last week that its Metrology Research and Development team had won the 2024 "Team of the Year" R&D 100 Professional Award from R&D World. The magazine that each year announces the R&D 100 awards that have been dubbed the “Oscars of Innovation” also selects just one “Team of the Year” and announces that award together with four other professional awards.

The JT-60SA project

August 2, 2024, 3:01PMNuclear NewsTakahiro Suzuki
Fig. 1. A photograph (left) and schematic figure (right) of JT-60SA. (Source: Naka Institute)

JT-60SA (Japan Torus-60 Super Advanced) is the world’s largest superconducting tokamak device. Its goal is the earlier realization of fusion energy (see Fig. 1). Fusion is the energy that powers the Sun, and just 1 gram of deuterium-tritium (D-T) fuel produces enormous energy—the equivalent of 8 tons of crude oil.

Last fall, the JT-60SA project announced an important milestone: the achievement of the tokamak’s first plasma. This article describes the objectives of the JT-60SA project, achievements in the operation campaign for the first plasma, and next steps.

U.K., Japan step up progress toward fusion power demonstrations

July 30, 2024, 9:30AMNuclear News
A screengrab from a video released by the STEP program on July 23 illustrating the future home of the prototype fusion power plant. (Image: UKAEA/STEP)

Japan’s recent moves to boost fusion power in the nation’s energy plan and accelerate the timeline for a prototype fusion power plant come in response to increased global attention on fusion energy. Even as ITER faces delays, more than 40 private fusion developers are pursuing different technologies and competing for attention. And so are other countries, including the United Kingdom, which announced its plans for a fusion pilot plant back in 2019. Fusion companies and nations alike are responding to a growing sense that there is a race—or at least collective momentum—to commercialize fusion energy.

IAEA’s Grossi highlights the growing promise of nuclear energy

July 19, 2024, 12:02PMANS Nuclear Cafe
Rafael Mariano Grossi, director general of the International Atomic Energy Agency. (Photo: IAEA)

The peaceful uses of nuclear science and technology today hold more promise to heal the world since Austrian Swedish physicist Lise Meitner and her colleagues discovered nuclear fission in 1938, said Rafael Mariano Grossi, director general of the International Atomic Energy Agency, in a new essay titled “Nuclear Must Be Part of The Solution” published by the magazine Foreign Affairs.

FIA publishes “snapshot in time” fusion industry report

July 19, 2024, 7:00AMNuclear News

Following new federal funding and programs announced in June to support a “bold decadal vision” for fusion energy in the United States, and the enactment of the Fusion Energy Act in July, fusion energy trade group the Fusion Industry Association has released its latest annual survey of fusion companies: The Global Fusion Industry in 2024.

This fourth annual report includes responses from three companies that were not surveyed in 2023 as well as an additional $900 million of reported funding in the past year. That’s growth—but growth that falls short of the “bold” expectations set by the eye-popping $2.8 billion of funding reported by private companies in 2022, as media outlets—including Reuters, with the headline “Global Fusion Energy Investment Growth Falls for Second Year”—were quick to point out.

Fusion is real, and it’s now

July 8, 2024, 9:30AMNuclear NewsLauren Garrison

Lauren Garrison

We have seen many advancements in the fusion field in the past handful of years. In 2021, the National Academies released a report titled Bringing Fusion to the U.S. Grid.a In March 2022, the White House held a first-ever fusion forum, “Developing a Bold Decadal Vision for Commercial Fusion Energy.”b The National Ignition Facility had a record-setting fusion pulse that achieved more power output than the laser input, called ignition, in December 2022.c The Department of Energy’s Office of Fusion Energy Sciences (FES) started a new public-private partnership program, the fusion milestone program, in May 2023 that made awards to eight fusion companies in a cost-share model.d That same summer, FES got a new associate director, Dr. Jean Paul Allain,e who has announced intentions for changing the structure of the FES office to better embrace an energy mission for fusion while keeping the strong foundation in basic science and non-fusion plasmas. ITER construction has continued, with various parts being delivered and systems finished. For example, the civil engineering of the tokamak building was completed in September 2023 after 10 years of work.f Even more fusion companies have been founded, and the Fusion Industry Association has 37 members now.g

“Whole-of-government” approach suggested for U.S. nuclear to compete with China

July 1, 2024, 3:00PMANS Nuclear Cafe
Nuclear power plants in operation or under construction as of May 2024. (Source: IAEA)

The recent article “How Innovative Is China in Nuclear Power?” published by the Information Technology and Innovation Foundation (ITIF) describes how China has become the world’s leading proponent of nuclear energy. The reason, the article maintains, is because its nuclear industry has been “supported by a whole-of-government strategy that provides extensive financing and systemic coordination.”

ITER leaders propose a decade of work before D-D operations in 2035

June 24, 2024, 3:03PMNuclear News
Member delegates, their experts and interpreters, and representatives of the ITER Organization and the ITER domestic agencies convened for the 34th ITER Council. (Photo: ITER)

At the 34th ITER Council Meeting, held June 19–20, ITER director general Pietro Barabaschi reported on ITER’s progress and presented an updated baseline proposal that would “prioritize the start of substantial research operations as rapidly as possible.”

Australian undergrads take on tokamak project

June 12, 2024, 3:00PMANS Nuclear Cafe

A computer rendering of a tokamak device designed by students at the University of New South Wales. (Credit: UNSW)

A recent article on Australia’s ABC News website highlighted the work of undergraduate physics and engineering students at the University of New South Wales (UNSW) to design, build, and operate their own small nuclear fusion reactor. The ambitious work, known as the AtomCraft project, is being led by associate professor Patrick Burr with the objective of producing a student-built tokamak reactor by the end of 2026.

Australia-based HB-11 Energy and U.K.-based Tokamak Energy have partnered with UNSW for the project.

Research goals: The AtomCraft project has the following research goals for participating students, according to its website:

Our team aims [to] make the world’s first fusion reactor entirely designed, built, and operated by students. And [to] do so in 2 years. You will develop innovative solutions to engineering challenges across many engineering disciplines, work closely with industry partners, and be part a vibrant team of enthusiastic and dedicated people who want to push the boundaries of what is possible with fusion energy.

New fusion energy strategies and partnerships announced at White House event

June 10, 2024, 12:00PMNuclear News

Just one week after the White House Office of Science and Technology Policy hosted a summit on domestic nuclear deployment, they filled a room again on June 6 for a livestreamed event cohosted with the Department of Energy to announce a new DOE fusion energy strategy and new public-private partnership programs, and to hear directly from stakeholders—including scientists, private fusion companies, investors, and end users—during panel discussions on fusion science and technology progress and the path to fusion energy commercialization.