The origins of The Reactor Safety Study

September 10, 2021, 8:22AMUpdated December 31, 2021, 7:15AMNuclear NewsThomas R. Wellock
An aerial view of the Hanford reservation and Columbia River that shows the N (nearest), KE/KW (center), and B (top right) reactors. (Photo: U.S. DOE )

In March 1972, Stephen Hanauer, a technical advisor with the Atomic Energy Commission, met with Norman Rasmussen, a nuclear engineering professor at the Massachusetts Institute of Technology. The AEC had recruited Rasmussen to develop a report, The Reactor Safety Study (WASH-1400), to estimate the probabilities and consequences of a major nuclear power plant accident. With thousands of safety components in a modern reactor, the task was mind-boggling. Rasmussen proposed a novel approach based on more powerful computers, “fault tree” methodology, and an expanding body of operational data. By calculating and aggregating probabilities for innumerable failure chains of components, he believed he could develop a meaningful estimate of overall accident risk. WASH-1400 would be a first-of-its-kind probabilistic risk assessment (PRA).

Tennessee-85 students to receive inaugural Social Responsibility award from ANS

October 4, 2021, 12:01PMANS News

The American Nuclear Society has selected a group of Black former students known as the Tennessee-85 to receive the inaugural Social Responsibility in the Nuclear Community Award. The 85 former students are receiving the honor in recognition of their bravery and leadership displayed in desegregating an Oak Ridge school in Tennessee in 1955. A co-recipient of the award is the Secretary of Energy for the leadership displayed by the Atomic Energy Commission (now the Department of Energy) in ordering the all-white Oak Ridge public schools to integrate that year. The award will be presented at the upcoming ANS Winter Meeting.

Woke nuclear?

September 15, 2021, 3:00PMANS Nuclear CafeMaureen T. Koetz

DISCLAIMER: The views expressed in posted articles do not necessarily reflect the views of the American Nuclear Society. The views expressed here are those of the individual authors. ANS takes no ownership of their views. The American Nuclear Society assumes no responsibility or liability for any use or operation of any methods, products, instructions, or ideas contained on this site.

After decades of relinquishing its value and return on investment as “emission-free” electricity generation, segments of the nuclear industry are pursuing actions in several states to secure emission credits for avoiding greenhouse gas emissions. To harmonize electricity market stability and greenhouse gas emission reduction goals, states such as New York and New Jersey have enacted programs to award zero emission credits (ZECs) to nuclear plants for their emission-free output.

Dearly earned and too long forgone, air emission credits have been the economic birthright of the nuclear industry since the passage of the 1990 Clean Air Act (CAA) amendments, when emission control capability first became a tradable commodity. Yet it took until 2016 for ratepayers and shareholders to receive even a small fraction of this valuable return on investment.

Nuclear Plant Construction Delay and Cost 3

November 2, 2018, 5:24PMANS Nuclear CafeWill Davis

Reactor vessel delivered to Calvert Cliffs; from brochure in Will Davis collection.

The year 1971 saw a continuation of the general trend of rising capital costs for all types of power plants, described by the U.S. Atomic Energy Commission (AEC) in its publication for 1971 as having "risen rather rapidly."  According to the AEC, the aggregate major causes for the increases in costs specific to nuclear electric power plants were as follows, with author's analysis accompanying each: