AI can predict and prevent fusion plasma instabilities in milliseconds

March 4, 2024, 2:59PMNuclear News
The Princeton Plasma Physics Laboratory. (Photo: PPPL)

A team of engineers, physicists, and data scientists from Princeton University and the Princeton Plasma Physics Laboratory (PPPL) have used artificial intelligence (AI) to predict—and then avoid—the formation of a specific type of plasma instability in magnetic confinement fusion tokamaks. The researchers built and trained a model using past experimental data from operations at the DIII-D National Fusion Facility in San Diego, Calif., before proving through real-time experiments that their model could forecast so-called tearing mode instabilities up to 300 milliseconds in advance—enough time for an AI controller to adjust operating parameters and avoid a tear in the plasma that could potentially end the fusion reaction.

To continue reading, log in or create a free account!

Related Articles

Pronuclear leader wins German election

February 25, 2025, 7:00AMNuclear News

The conservative Christian Democratic Union came out on top in Germany’s February 23 election. CDU leader Friedrich Merz achieved a “lackluster win,” as the Associated Press termed it,...

Argonne scientists use AI to detect hidden defects in stainless steel

AI-powered imaging from Argonne reveals hidden flaws in stainless steel and could boost safety in critical industries

February 7, 2025, 2:59PMNuclear NewsKristen Dean

Imagine you’re constructing a bridge or designing an airplane, and everything appears flawless on the outside. However, microscopic flaws beneath the surface could weaken the entire...