ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Workshop
Thursday, April 4, 2024|8:00AM–12:00PM EDT|Eric J. Barron Innovation Hub Room 603
Session Organizers:
Carolina Dutra (Penn State University)
David Reger (Penn State University)
Want to learn more about the MOOSE Framework and how to use it? Join our PSU students and Dr. Joshua Hansel (INL) for this hands-on workshop which will introduce attendees to the Multiphysics Object Oriented Simulation Environment (MOOSE), an open-source finite element framework developed by Idaho National Laboratory (INL) for advanced computational modeling and simulation. The workshop is designed for those with no prior experience using MOOSE. Attendees should bring laptops with MOOSE pre-installed to follow along with hands-on exercises and examples. Installation instructions will be provided prior to the workshop. By the end, you will be able to create simple models with the classes available in MOOSE's library and have basic orientation on creating your own MOOSE-based applications.
Speaker
Joshua Hansel
Dr. Joshua Hansel is a computational scientist at Idaho National Laboratory. He earned his Ph.D. in nuclear engineering at Texas A&M University with his Ph.D. research on stabilization techniques for solving hyperbolic systems of partial differential equations. Since beginning his career at INL, Dr. Hansel has worked on the systems code RELAP-7 and the MOOSE Thermal Hydraulics Module (THM). Currently, he is the lead developer of the MOOSE-based heat pipe application, Sockeye.
To join the conversation, you must be logged in and registered for the meeting.
Register NowLog In