ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Sunday, May 15, 2022|8:00AM–12:00PM EDT
Haselton
Organizer: Xu Wu, North Carolina State University
Machine Learning (ML) is a subset of Artificial Intelligence (AI) which studies computer algorithms that can improve automatically through experience (data). Deep Learning (DL) is a subset of ML that uses multi-layered neural networks to deliver state-of-the-art accuracy in tasks such as object detection, speech recognition, language translation and others. Scientific Machine Learning (SciML), more specifically, consists of computational technologies that can be trained with scientific data to augment or automate human skills. ML has been very successful in areas such as computer vision, natural language processing, etc. But its application in scientific computing is relatively new, especially in Nuclear Engineering (NE). This workshop aims at augmenting the applications of AI/ML in scientific computing in nuclear computational science, and promoting ML-based transformative solutions across various DOE missions.
Recently, ML/DL have been applied in areas such as data-driven closure model development for nuclear thermal-hydraulics, data-driven material discovery and qualification, Digital Twins for integrated energy systems, small modular reactors (SMRs) and micro-reactors, AI-based autonomous operation and control for advanced nuclear reactors, AI-based diagnosis, prognosis and predictive maintenance, etc. In this workshop, we will have five presentations that cover a wide range of topics, including:
Speaker Slides
Active learning for computational simulations: Application to TRISO fuel failure analysis
Development of Neural Thermal Scattering (NeTS) Modules For Data Representation and Applications
Development of A Nearly Autonomous Management and Control System for Advanced Reactors
Applications of AI/ML from Nuclear Data to Reactor Design
Prediction of PWR Pin Powers using Convolutional Neutral Networks