ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sunday, May 15, 2022|8:00AM–12:00PM EDT
Haselton
Organizer: Xu Wu, North Carolina State University
Machine Learning (ML) is a subset of Artificial Intelligence (AI) which studies computer algorithms that can improve automatically through experience (data). Deep Learning (DL) is a subset of ML that uses multi-layered neural networks to deliver state-of-the-art accuracy in tasks such as object detection, speech recognition, language translation and others. Scientific Machine Learning (SciML), more specifically, consists of computational technologies that can be trained with scientific data to augment or automate human skills. ML has been very successful in areas such as computer vision, natural language processing, etc. But its application in scientific computing is relatively new, especially in Nuclear Engineering (NE). This workshop aims at augmenting the applications of AI/ML in scientific computing in nuclear computational science, and promoting ML-based transformative solutions across various DOE missions.
Recently, ML/DL have been applied in areas such as data-driven closure model development for nuclear thermal-hydraulics, data-driven material discovery and qualification, Digital Twins for integrated energy systems, small modular reactors (SMRs) and micro-reactors, AI-based autonomous operation and control for advanced nuclear reactors, AI-based diagnosis, prognosis and predictive maintenance, etc. In this workshop, we will have five presentations that cover a wide range of topics, including:
Speaker Slides
Active learning for computational simulations: Application to TRISO fuel failure analysis
Development of Neural Thermal Scattering (NeTS) Modules For Data Representation and Applications
Development of A Nearly Autonomous Management and Control System for Advanced Reactors
Applications of AI/ML from Nuclear Data to Reactor Design
Prediction of PWR Pin Powers using Convolutional Neutral Networks