ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA to file for Clinch River SMR construction permit by June
In a Q&A posted on TVA’s website last week about a “new nuclear heyday,” Bob Deacy shared his vision for the Clinch River nuclear site in Oak Ridge, Tenn.—and some news about next steps for the company’s small modular reactor plans.
The Tennessee Valley Authority’s senior vice president for the Clinch River project, Deacy described his vision for up to four SMRs built on plots smaller than a football field with state-of-the-art digital equipment and a newly trained workforce providing reliable 24/7 power to the grid.
Sunday, April 27, 2025|1:00–5:00PM MDT
Lawrence A
Cost: $49
Limited Space
Organizer: Xu Wu (North Carolina State University)
Machine Learning (ML) is a subset of Artificial Intelligence (AI) that studies computer algorithms which improve automatically through experience (data). ML algorithms typically build a mathematical model based on training data and then make predictions without being explicitly programmed to do so. Its performance increases with experience, in other words, the machine learns. AI/ML have achieved tremendous success in tasks such as computer vision, natural language processing, speech recognition, and audio synthesis, where the datasets are in the format of images, text, spoken words and videos. Meanwhile, their applications in engineering disciplines mostly focus on scientific data, which resulted in a burgeoning discipline called scientific machine learning (SciML) that blends scientific computing and ML. SciML brings together the complementary perspectives of computational science and computer science to craft a new generation of ML methods for complex applications across science and engineering. Examples of SciML include physics-informed ML, surrogate modeling & model reduction, Bayesian inverse problems, digital twins, and ML-based uncertainty, sensitivity, assimilation, and validation analysis.
The “SciML for Nuclear Engineering Applications” workshop series has been organized in M&C and PHYSOR conferences since 2021. The goal of this workshop series is to present the most recent advances on SciML applications in Nuclear Engineering, as well as to provide training on essential SciML research topics. We hope to augment the applications of AI/ML in scientific computing, and preparing the students for driving the next wave of data-driven scientific discovery in Nuclear Engineering. In this workshop, we will have four presentations that cover a wide range of topics, from fundamental SciML topics on an educational perspective to most recent research developments in SciML in various Nuclear Engineering areas.