ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sunday, April 27, 2025|1:00–5:00PM MDT
Cost: $49
Limited Space
Organizer: Xu Wu (North Carolina State University)
Machine Learning (ML) is a subset of Artificial Intelligence (AI) that studies computer algorithms which improve automatically through experience (data). ML algorithms typically build a mathematical model based on training data and then make predictions without being explicitly programmed to do so. Its performance increases with experience, in other words, the machine learns. AI/ML have achieved tremendous success in tasks such as computer vision, natural language processing, speech recognition, and audio synthesis, where the datasets are in the format of images, text, spoken words and videos. Meanwhile, their applications in engineering disciplines mostly focus on scientific data, which resulted in a burgeoning discipline called scientific machine learning (SciML) that blends scientific computing and ML. SciML brings together the complementary perspectives of computational science and computer science to craft a new generation of ML methods for complex applications across science and engineering. Examples of SciML include physics-informed ML, surrogate modeling & model reduction, Bayesian inverse problems, digital twins, and ML-based uncertainty, sensitivity, assimilation, and validation analysis.
The “SciML for Nuclear Engineering Applications” workshop series has been organized in M&C and PHYSOR conferences since 2021. The goal of this workshop series is to present the most recent advances on SciML applications in Nuclear Engineering, as well as to provide training on essential SciML research topics. We hope to augment the applications of AI/ML in scientific computing, and preparing the students for driving the next wave of data-driven scientific discovery in Nuclear Engineering. In this workshop, we will have four presentations that cover a wide range of topics, from fundamental SciML topics on an educational perspective to most recent research developments in SciML in various Nuclear Engineering areas.