ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Workshop
Sunday, October 3, 2021|11:00AM–1:00PM EDT
Session Chair:
Dean Wang (The Ohio State Univ.)
Student Producer:
Khaldoon Al-Dawood (NC State Univ.)
Speaker: Dean Wang (The Ohio State University).
It has been well known that the analytic neutron transport solution limits to the analytic solution of a diffusion problem for optically thick systems with small absorption and source. The standard technique for proving the asymptotic diffusion limit is constructing an asymptotic power series of the neutron angular flux in small positive parameter, which is the ratio of a typical mean free path of a particle to a typical dimension of the domain under consideration. In this workshop, we will present a new proof to directly show that the analytical neutron transport solution satisfies the diffusion equation at the asymptotic limit based on a recently obtained closed-form analytical solution of the monoenergetic SN neutron transport equation in slab geometry. In numerical solution of the SN neutron transport equation, a spatial discretization is of practical interest if it possesses the optically thick diffusion limit. Such a numerical scheme will yield accurate solutions for diffusive problems if the spatial mesh size is thin with respect to a diffusion length, whereas the mesh cells are thick in terms of a mean free path. We will present a recently obtained theoretical result on the asymptotic diffusion limit of numerical schemes and what mesh sizes should be used to achieve accurate results. In addition, we will present an interesting implication of the asymptotic diffusion limit on Fourier analysis for CMFD schemes. Audience: anyone.
To access the session recording, you must be logged in and registered for the meeting.
Register NowLog In
To access session resources, you must be logged in and registered for the meeting.
To join the conversation, you must be logged in and registered for the meeting.