ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Workshop
Sunday, October 3, 2021|9:00AM–1:00PM EDT
Session Chair:
Barry Ganapol (Univ. of Arizona)
Student Producer:
William Dawn (NC State Univ.)
Did you ever wonder about the variety of solutions to solve the 1D monoenergetic neutron transport equation? Chances are you have not, but if you attend this workshop, you will have the answer — because it’s all about 1D transport solutions. In four hours, we will discuss as many of the following methods as time allows:
Our discussion covers the mathematical theory, the numerical formulation and the challenges of each (time permitting). The methods will be theoretically and numerically contrasted to feature their advantages and disadvantages. You might ask, “Why study such a basic transport problem with seemingly little practical value?” One answer is “benchmarking”. Because of simplicity, the 1D monoenergetic transport equation is the most widely solved transport equation in today’s transport community. A second answer is “intellectual enlightenment”. The solutions discussed touch upon a broad range of mathematical and numerical methods taught in the classroom. Specifically, we will discuss what constitutes extreme benchmarks, their application and limitation. Convergence acceleration, central to extreme benchmarks, will be introduced through a specially prepared benchmarking exercise.
If you are a serious student of transport theory and have the burning desire to learn more about analytical solutions from an expert in the field, you certainly do not want to miss this opportunity. The mystery of the 1D transport equation will be unraveled in an understandably consistent way. In addition, each participant, who completes the workshop, will receive a flash drive containing programs and examples of all solutions.
To access the session recording, you must be logged in and registered for the meeting.
Register NowLog In
To join the conversation, you must be logged in and registered for the meeting.