ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Pacific Fusion predicts “1,000-fold leap” in performance, net facility gain by 2030
Inertial fusion energy (IFE) developer Pacific Fusion, based in Fremont, Calif., announced this morning that it is on target to achieve net facility gain—more fusion energy out than all energy stored in the system—with a demonstration system by 2030, and backs the claim with a technical paper published yesterday on arXiv: “Affordable, manageable, practical, and scalable (AMPS) high-yield and high-gain inertial fusion.”
12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT 2021)
Technical Session|Panel
Tuesday, June 15, 2021|4:30–6:15PM EDT
Session Chair:
M. N. Ericson
Session Organizer:
Alternate Chair:
Pradeep Ramuhalli
Staff Producer:
Janet Davis (ANS)
Present day electronics technologies for sensing, signal processing, and communications in nuclear power plants are not well suited for high radiation and high temperature placement, such as near the reactor core. As a result, sensing and communication technologies involving electronics are generally implemented remotely, utilize lengthy wired connections, depend on high-cost maintenance or replacement plans, or are omitted altogether. Most present-day commercial radiation hardened electronics offerings are largely directed towards low earth orbit (satellite) applications. Consequently, these designs seldom exceed a few hundred krad total ionizing dose (TID) as they are primarily designed to exhibit resistance to single-event effects (SEEs), making them unsuitable for near-core reactor application. New technologies are needed to advance this field and improve the process of reactor sensing and control. This panel will provide an opportunity to further identify and address the important issues associated with electronics placement near the reactor core. Points of discussion will include general identification of the sensing requirements for reactor environments including justifications for placement in particularly harsh zones, reviewing radiation effects on electronic devices, identification and assessment of the state-of-the-art in rad-hard and high temperature electronics and present limitations, and methods forward for improving electronics suitability for near-core application. Additionally, availability and dissemination of data for commercial and emerging sensors, electronics, and systems will be discussed. The realization of higher radiation and temperature resistant electronics will enable more prolific use of sensing, processing, control, and communication technologies in near- or in-core locations resulting in improved safety, efficiency and cost for in-service reactors and future advanced reactor designs.
To access the session recording, you must be logged in and registered for the meeting.
Register NowLog In
To access session resources, you must be logged in and registered for the meeting.
To join the conversation, you must be logged in and registered for the meeting.