

The Quest for Gold Exploring Nuclear Transmutation

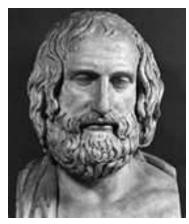
January 2025

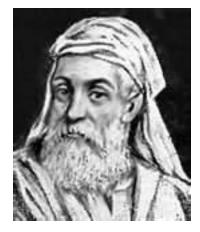
Presented by Candace Davison, M.Engr.

Alchemy

A brief history of atoms and alchemy

Anaxagoras


- Greek, born 500 B.C.
- Infinite divisibility of matter


"Of what is small, there is no smallest part, but always a smaller."

Empedocles

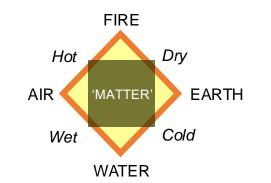
- Greek, born 490 B.C.
- Four basic elements: earth, air, fire, water
- Conservation of mass

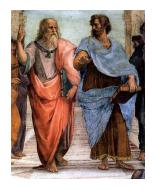
"Nothing new comes or can come into being; the only change that can occur is a change in the arrangement of the elements."

A brief history of atoms and alchemy

Democritus

- Greek, Born 460 B.C.
- Everything is composed of atoms
 - Indestructible, indivisible
 - Empty space between them
 - Always in motion
- Origin of the universe
 - Atoms came together to form larger substances
- More than four elements


"Nothing exists but atoms and space, all else is opinion."



A brief history of atoms and alchemy

Aristotle and Plato

- Believed there were only four elements
- Elements can transform to other elements

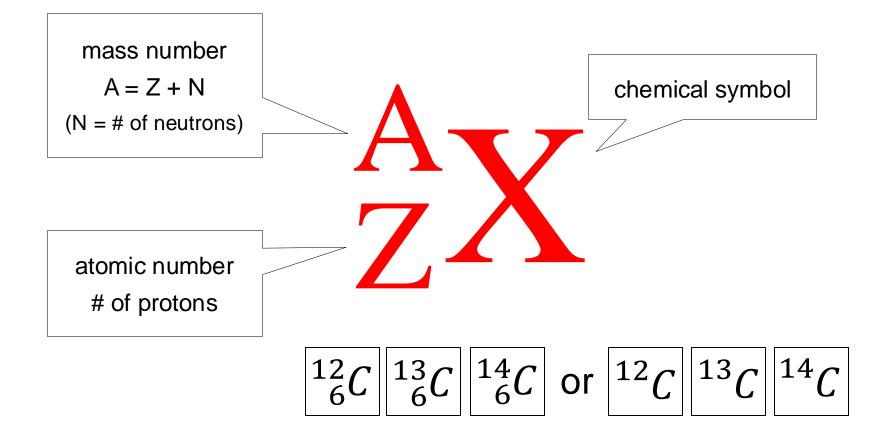
Alexander the Great

- King of Macedon
- Tutored by Aristotle
- Alchemy was deemed only science worth pursuing

Cleopatra Chrysopoeia

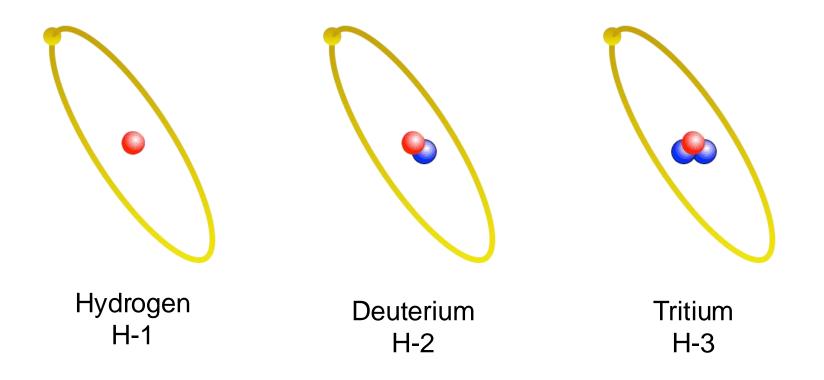
Periodic Table of the Elements

232.04

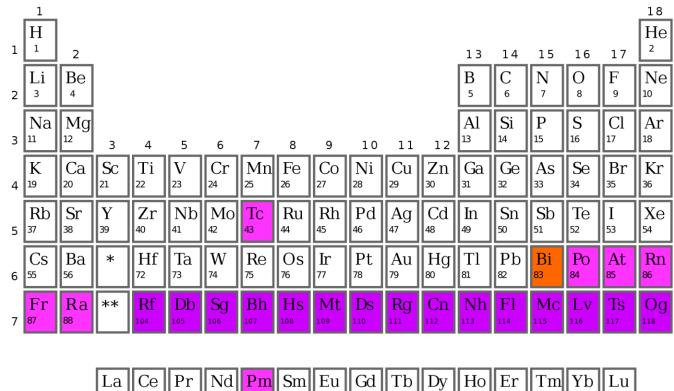

231.04

238.03

1					I	UPAC	Period	lic Tal	ble of	the Ele	ement	S					18
1 H hydrogen																	2 He helium
[1.0078, 1.0082]	2		Key:	_								13	14	15	16	17	4.0026
3 Li lithium 6.94 [6.938, 6.997]	4 Be beryllium 9.0122		atomic num Symbo name conventional atomic w standard atomic w	OI veight								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen ^{14.007} [14.006, 14.008]	8 Oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 [32.059, 32.076]	17 Cl chlorine 35.45 [35.446, 35.457]	18 Ar argon 39.948
19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobalt	28 Ni nickel	29 Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine 79.904	36 Kr krypton
39.098	40.078(4)	44.956	47.867	50.942	51.996	54.938	55.845(2)	58.933	58.693	63.546(3)	65.38(2)	69.723	72.630(8)	74.922	78.971(8)	[79.901, 79.907]	83.798(2)
37 Rb rubidium	38 Sr strontium	39 Y yttrium	40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 TC technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	47 Ag silver	48 Cd cadmium	49 In indium	50 Sn tin	51 Sb antimony	52 Te tellurium	53 I iodine	54 Xe xenon
85.468	87.62	88.906	91.224(2)	92.906	95.95		101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
55 Cs caesium 132.91	56 Ba barium 137.33	57-71 Ianthanoids	72 Hf hafnium 178.49(2)	73 Ta tantalum 180.95	74 W tungsten 183.84	75 Re rhenium	76 OS osmium 190.23(3)	77 Ir iridium 192.22	78 Pt platinum 195.08	79 Au gold 196,97	80 Hg mercury 200.59	81 TI thallium 204.38 [204.38, 204.39]	82 Pb lead	83 Bi bismuth 208.98	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 Mc moscovium	116 LV livermorium	117 Ts tennessine	118 Og oganessor
	-1-2		67	50	50	60	61	62		64	05		07	<u></u>	69	70	74
			57 La Ianthanum	58 Ce cerium	59 Pr praseodymium	Nd neodymium	Pm promethium	Sm samarium	63 Eu europium	Gd gadolinium	65 Tb terbium	66 Dy dysprosium 162.50	67 Ho holmium	68 Er erbium	Tm thulium	70 Yb ytterbium	71 Lu Iutetium
		OF	138.91 89 AC	90 Th	91 Pa	144.24 92 U	93 Np	150.36(2) 94 Pu	151.96 95 Am	157.25(3) 96 Cm	97 Bk	98 Cf	164.93 99 Es	167.26 100 Fm	168.93 101 Md	173.05 102 NO	174.97 103 Lr
AND APPLI			actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium


For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

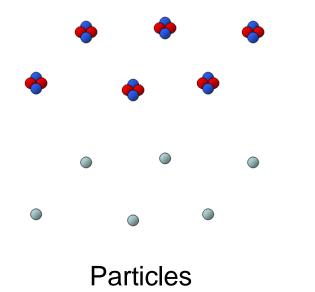
Standard nuclear notation

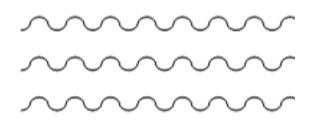


Isotopes

Three isotopes of hydrogen

Why are atoms radioactive?

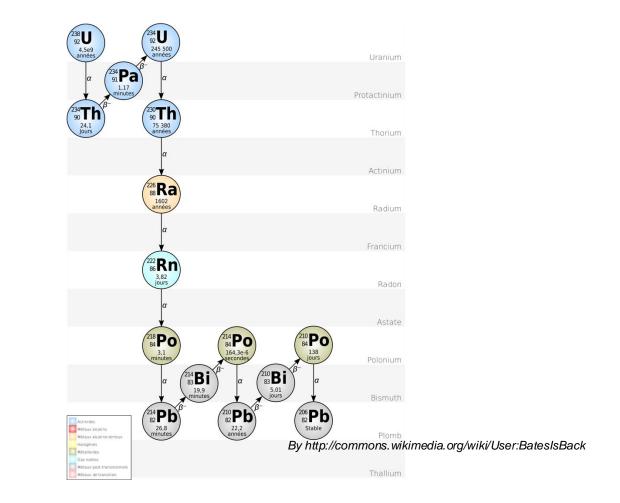

L * lanthanoid ⁵⁷		 	1NA 60		EU 63	 			Er 68	 Y D 70	Lu 71
A ** actinoids 89	C	 Pa 91		Pu 94	Am 95		Cf 98	Es 99			Lr 103


Nuclear stability

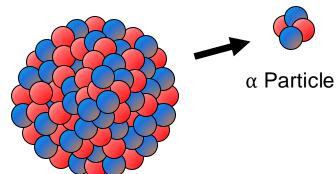
- An unstable nucleus becomes more stable by rearranging its nuclear structure and emitting *radiation*.
- If unstable after radioactive decay, further decay is possible.

What is radiation?

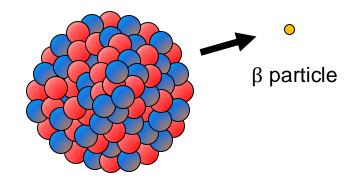
Transmission of energy via:



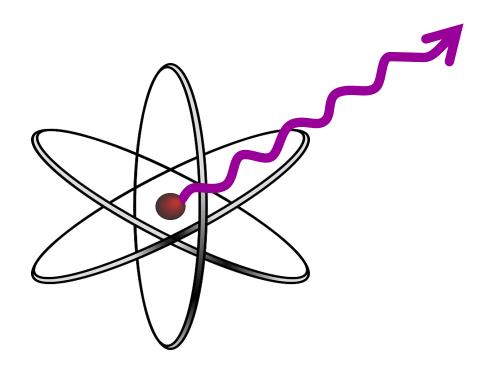
Waves


or

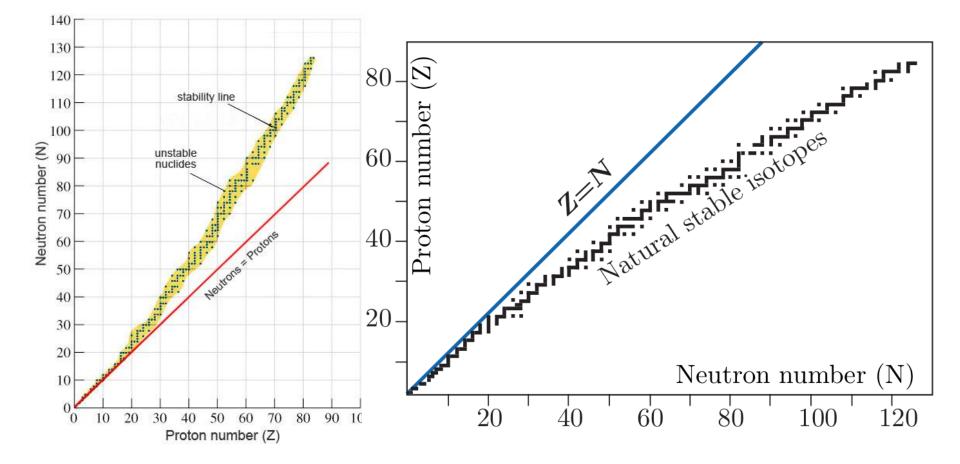
Radioactive decay - transmutation


Alpha particle α

Helium nucleus that is emitted from a radioactive atom's nucleus


Beta particle β^-

Electron emitted from an atom's nucleus when a neutron converts to a proton



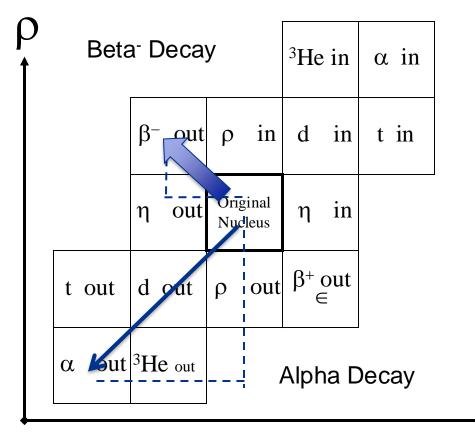
High-energy photon emitted from an atom's nucleus

What make a nucleus unstable?

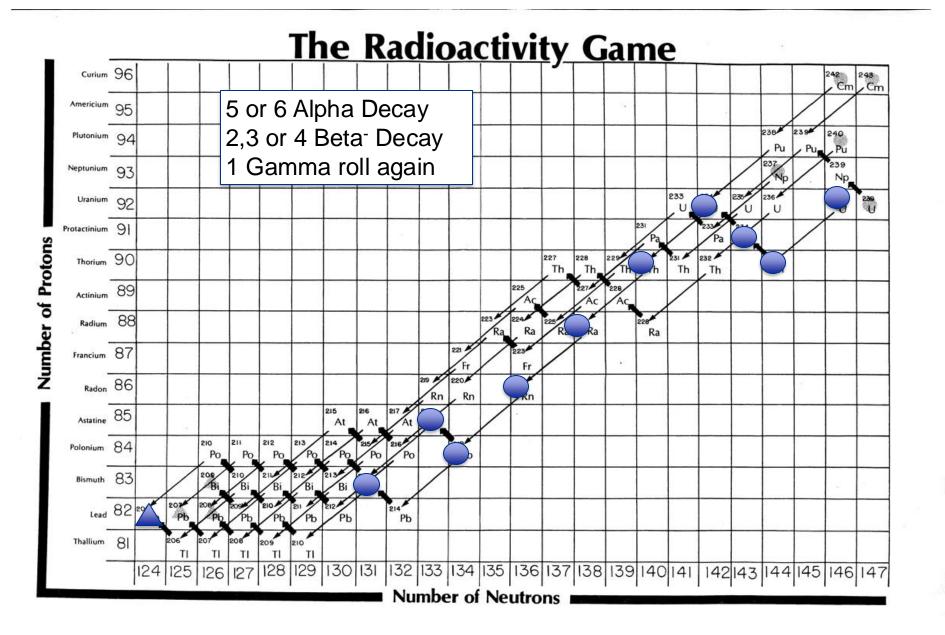
Nuclear stability

- Only certain combinations of neutrons and protons lead to a stable atom.
- In a stable atom, the attractive and repulsive forces in the nucleus balance.

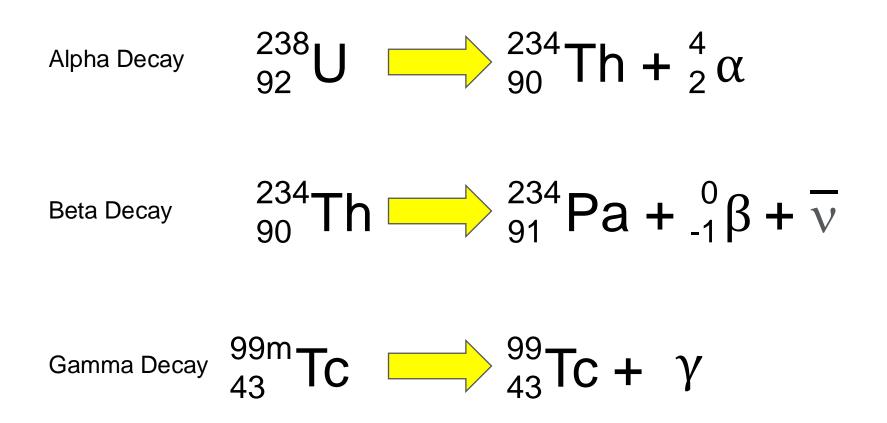
Nuclear stability

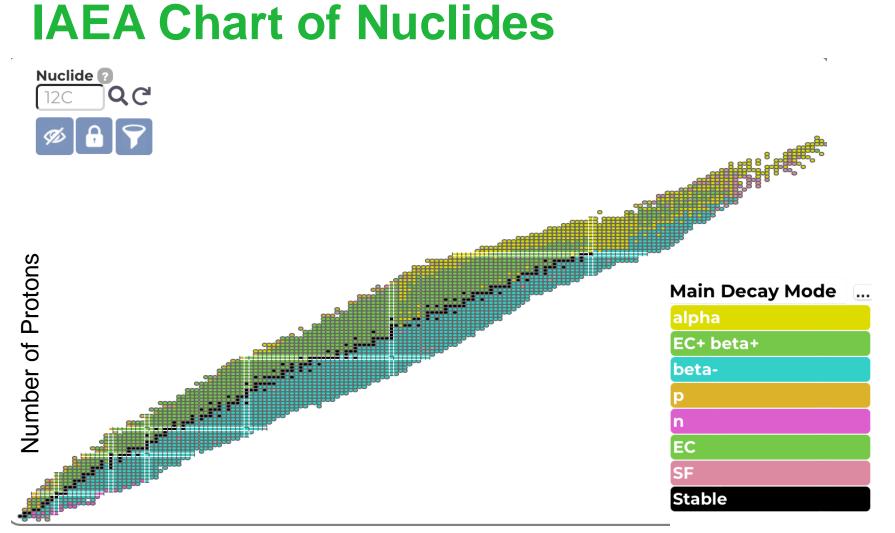

- Atoms with unstable nuclei are radioactive.
- If unstable after radioactive decay, further decay is possible.
- Nuclei decay toward the line of stability.

Relative locations of products of various nuclear processes


ρ 1			³ He in	α in
	β^- out	ρ in	d in	t in
	η out	Original Nucleus	η in	
t out	d out	ρ out	$\beta^+ \operatorname{out}_{\in}$	
α out	³ He out			-

- α alpha particle
- β^- negative electron
- β^+ positron
- ∈ electron capture
- η neutron
- ρ proton
- d deuteron
- t triton (H-3 nucleus)
- ³He helium-3 nucleus


Relative locations of products of various nuclear processes



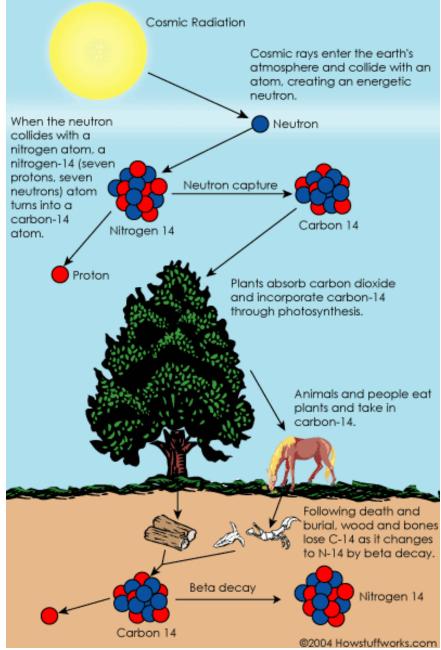
- α alpha particle
- β^- negative electron
- β^+ positron
- ∈ electron capture
- η neutron
- ρ proton
- d deuteron
- t triton (H-3 nucleus)
- ³He helium-3 nucleus

Radioactive decay equations

Number of Neutrons

https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

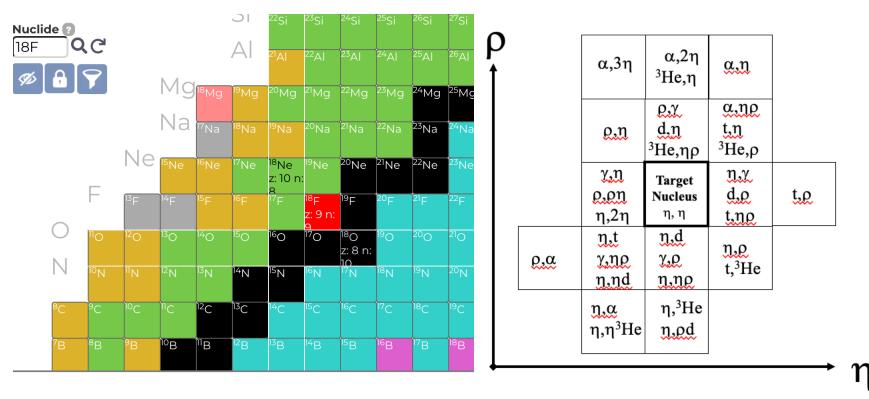
Nuclear Reactions


ρ 1	α,3η	α,2η ³ He,η	α,η		
	ρ,η	ρ,γ d,η ³ He,ηρ	α,ηρ t,η ³ He,ρ		
	γ,η ρ,ρη η,2η	Target Nucleus η, η	η,γ d,ρ t,ηρ	t,p	
ρ,α	η,t γ,ηρ η,ηd	η,d γ,ρ η,ηρ	η,ρ t, ³ He		_
	η,α η,η ³ He	η, ³ He η,ρd			

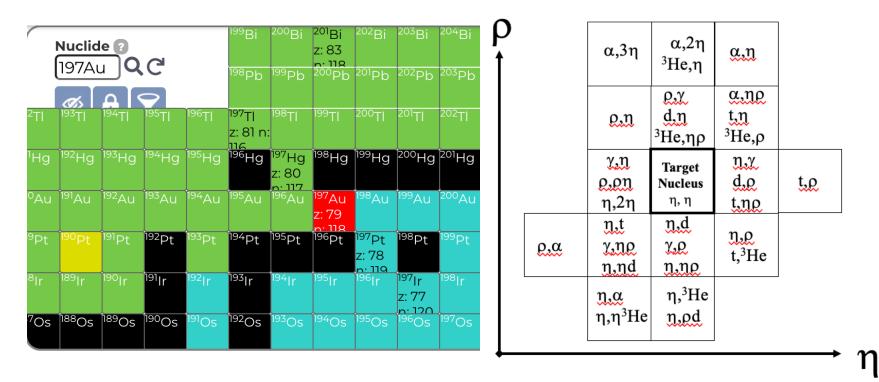
- α alpha particle
- γ gamma
- η neutron
- ρ proton

- d deuteron (²H nucleus)
- t triton (³H nucleus)

³He helium-3 nucleus

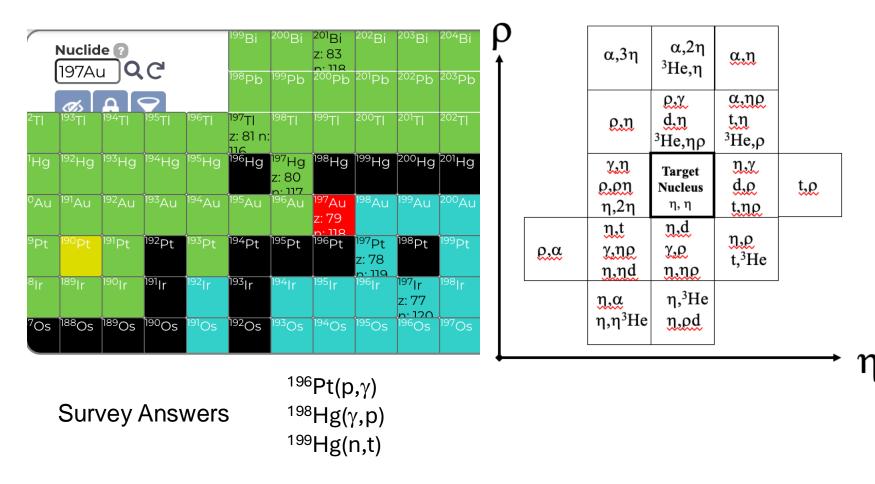

$${}^{59}_{27}Co + {}^1_0n \rightarrow {}^{60}_{27}Co + \gamma$$

Carbon-14

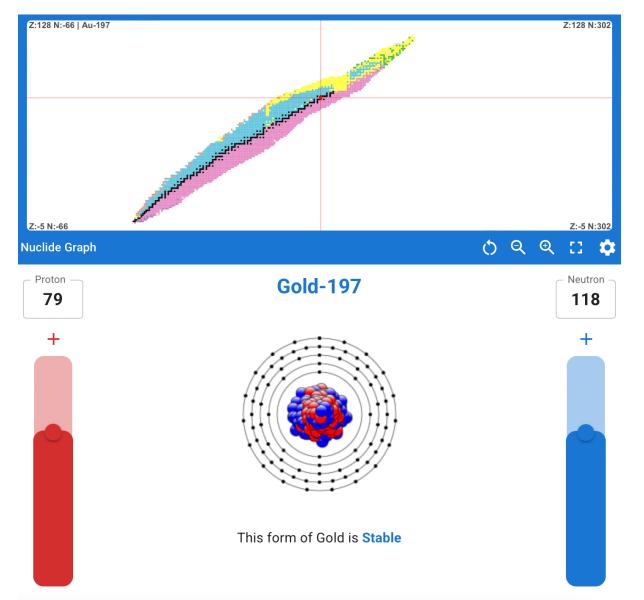

Production N-14 Target (n,p) ${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{14}_{6}C + {}^{1}_{1}p$ Radioactive Decay ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}\beta - {}^{0}_{0}\overline{\nu}$

How can we make Fluorine-18?

 $^{18}O(p,n)^{18}F^{-16}O(^{3}He,p)^{18}F^{-16}O(\alpha,np)^{18}F$


What reactions can we use to make gold?

Screenshot from:


https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html#lastnuc=197Au

Possible Reactions to Produce Gold

Screenshot from:https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html#lastnuc=197Au

ANS Isotope Discovery App

<u>Demo</u>

ANS Resources

ANS Educational Resources <u>ans.org/nuclear</u>

Navigating Nuclear (nuclear science curriculum for grades 3-12) ans.org/nuclear/navigatingnuclear

ANS Isotope Discovery App (link in chat)

Educator Training Webinars ans.org/nuclear/k12programs/educator/

Build a Nucleus: K-12 Classroom Investigations ans.org/webinars/view-edbn2024/ Decoding Radioactive Decay: Alpha, Beta, Gamma, and More ans.org/webinars/view-etdd23/ Radioisotopes: Nuclear Applications Beyond Energy ans.org/webinars/view-ediso2023/

Resources

Office of Nuclear Energy/ Department of Energy <u>https://www.energy.gov/ne/office-</u> <u>nuclear-energy</u>

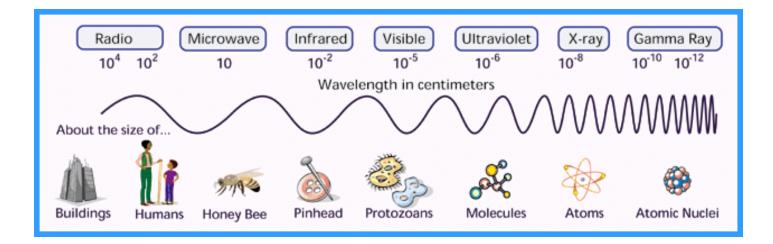
International Atomic Energy Agency IAEA. <u>https://www.iaea.org</u> Nuclear Explained <u>https://www.iaea.org/newscenter/nuclea</u> <u>r-explained</u>

PhET Simulations https://phet.colorado.edu/sims/html/buil d-an-atom/latest/build-an-atom_en.html Contemporary Physics Education Project CPEP <u>https://www.cpepphysics.org</u>

International Atomic Energy Agency IAEA. <u>https://www.iaea.org</u> Nuclear Explained <u>https://www.iaea.org/newscenter/nuclea</u> <u>r-explained</u>

Hyperphysics – Georgia State University. <u>http://hyperphysics.phy-</u> <u>astr.gsu.edu/hbase/nuccon.html#c1</u>

References


https://www.discovermagazine.com/the-sciences/turning-lead-into-gold https://www.scientificamerican.com/article/fact-or-fiction-lead-can-be-turnedinto-gold/ https://www.mgsrefining.com/blog/alchemy-and-chrysopoeia/ https://www.cnn.com/style/article/cleopatra-alchemist-louboutin/index.html

https://pmc.ncbi.nlm.nih.gov/articles/PMC4306521/

Cole EL, Stewart MN, Littich R, Hoareau R, Scott PJ. Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr Top Med Chem. 2014;14(7):875-900. doi: 10.2174/1568026614666140202205035. PMID: 24484425; PMCID: PMC4140448.

Questions?

Electromagnetic spectrum

Nuclear Reactions

ρ 1		α,3η	α,2η ³ He,η	α,η	
		ρ,η	ρ,γ d,η ³ He,ηρ	α,ηρ t,η ³ He,ρ	
		γ,η ρ,ρη η,2η	Target Nucleus η, η	η,γ d,ρ t,ηρ	t,p
	ρ,α	η,t γ,ηρ η,ηd	η,d γ,ρ η,ηρ	η,ρ t, ³ He	
		η,α η,η ³ He	η, ³ He η,ρd		

- α alpha particle
- γ gamma
- η neutron
- ρ proton

Ĩ

- d deuteron (²H nucleus)
- t triton (³H nucleus)

³He helium-3 nucleus

Nuclear Reactions

ρ 1		α,3η	α,2η ³ He,η	α,η	
		ρ,η	ρ,γ d,η ³ He,ηρ	α,ηρ t,η ³ He,ρ	
		γ,η ρ,ρη η,2η	Target Nucleus η, η	η,γ d,ρ t,ηρ	t,p
	ρ,α	η,t γ,ηρ η,ηd	η,d γ,ρ η,ηρ	η,ρ t, ³ He	
		η,α η,η ³ He	η, ³ He η,ρd		

η

More on this helium isotope ...

total number of Protons have a large mass protons and neutrons and a positive charge. The number of protons identifies MASS NUMBER an element. Neutrons have a large mass approximately equal to a ELEMENT SYMBOL proton's mass. Neutrons have no charge. Electrons have a very ATOMIC NUMBER small mass and a negative charge. Electrons travel number of protons outside the nucleus.