

Overview for the RIPB Community of Practice **The Safety-in-Design (SiD) Methodology—As Applied to Advanced Fission Projects & Beyond**

NUCLEAR

Steve Krahn & Megan Harkema Guest Star: Brandon Chisholm

October 25, 2024

WWW.epri.com | © 2024 Electric Power Research Institute, Inc. All rights reserved

Outline

- **Introduction**
- Background on Safety-in-Design (SiD) Methodology
- Using Process Hazards Analysis (PHA) Results to Support Quantitative Risk Estimates—As Demonstrated on a Freeze Valve
- Example Applications of SiD
- Lessons Learned

Introduction

Motivation

- Interest in advanced (Generation IV) nuclear reactor designs has continued to expand
- Many advanced reactor designs are at an early stage of the design process and differ significantly from Light Water Reactor (LWR) designs
- **Previous risk assessment efforts have been largely based LWR design details,** experience, and analysis
	- However, benefits of a risk-informed approach have been realized
- The Safety-in-Design (SiD) project¹ was developed in consultation with industry, as represented in the EPRI Advanced Reactor Technical Working Group, to construct a methodology that would use existing risk assessment tools to:
	- 1. Provide risk-informed insights early in the design process,
	- 2. Develop the safety case for the design,
	- 3. Incrementally build that safety case, and
	- 4. Contribute to the development more quantitative insights, such as Probabilistic Risk Assessment (PRA)—as the reactor design matures.

¹ Originally titled PHA-to-PRA project, see EPRI report No.'s 3002018340, 3002015752, and 3002011917 for further details

EPRI SiD Methodology Benefits

- Early integration of safety assessment into the design process using fit-for-purpose tools and methods can support:
	- Incremental development of the safety case for advanced reactor designs
	- Earlier identification of any needed R&D in time to benefit design
	- Efficient design iteration and improvement
	- Enhanced early regulatory engagement
- Established qualitative and semi-quantitative Process Hazard Analysis (PHA) methods can be used to provide a bridge to quantitative risk assessment.
	- Safety analysis technique not rooted in LWR technology
- Demonstration of a safety assessment approach that can be efficiently integrated with early stages of design and advance with maturing design
	- Recognizes the existence of unknowns for new and varying technologies
- Demonstration of the importance of early integration of SiD for the purpose of identifying and prioritizing risk-
significant design issues, technical uncertainty, and targeted needs for additional analysis/R&D/testing
- Demonstration of a SiD methodology that could support a **risk-informed and performance-based** licensing framework

Background on SiD Methodology

Image credit: EPRI Report 3002015752

VANDERBILT

School of Engineering

Organizing Concept: Process Hazards Analysis (PHA)

- A PHA is a set of systematic techniques structured to identify potential hazards and operability problems as part of the design process
- Most PHA methods focus on 2 questions from the Risk Triplet (in **bold**)
	- **What can go wrong?**
	- How likely is it?
	- **What are the consequences?**
- Most frequently a qualitative systematic evaluation of process upsets & how event sequences promulgate - can be a starting point for quantitative analysis
- Benefits
	- Powerful tool for early stages of design
		- Pull together design and safety analysts
	- Adaptable, amenable to iteration with increasing detail
- Methods recognized by NRC, DOE & others:
	- ANSI/ASME/ANS RA-S-1.4-2021: Probabilistic Risk Assessment Standard for Advanced Non-Light Water Reactor Nuclear Power Plants
	- NEI 18-04 & NRC Reg. Guide 1.233: Guidance for a Technology- Inclusive, Risk-Informed, and Performance-Based Methodology to Inform the Licensing Basis and Content of Applications for Licenses, Certifications, and Approvals for Non-Light-Water Reactors
	- DOE-STD-1189-2016: Integration of Safety into the Design Process
	- DOE-STD-1628-2013: Development of Probabilistic Risk Assessments for Nuclear Safety Applications
	- NUREG-1513: Integrated Safety Analysis Guidance Document
	- NUREG-1520: Standard Review Plan for the Review of a License Application for a Fuel Cycle Facility
	- Series of ISO Standards Associated with ISO-31000, Risk Management

NEI 18-04: Preliminary Identification of Hazardous Scenarios

- Early identification can be informed by past experience with other reactor design concepts
	- Informal brainstorming can tend toward familiar scenarios from LWR experience
	- often "core-centric"
- **Such an exercise does not replace a systematic hazards identification and phenomenological study (e.g., HAZOP, FMEA, Phenomenon Identification and Ranking Table [PIRT], etc.)**
	- Stylized scenarios (e.g., LBLOCA, ATWS) can mask other important drivers of risk for advanced reactor designs (e.g., TMI and SBLOCA)

Figure 2-2 Sample iteration of early integration of SiD

Image credit: EPRI Report 3002015752

Iterative Nature of SiD Methodology

- **Fig. 2 PHA tool selection** depends on, e.g.:
	- Maturity of design
	- Understanding of hazards and phenomena
	- Type of facility
	- Intended use of results

Using PHA Results to Support Quantitative Risk Estimates—As Demonstrated on a Freeze Valve

MSRE Case Study: Methodology Application Matrix

Refer to EPRI Report No. 3002015752 (Sections 2-3) and EPRI report No. 3002018340 for more information

Freeze Valves in Molten Salt Reactors (MSRs)

High operating temperatures in MSRs challenging environment for mechanical valves

Evaluations of a Freeze Valve Design

Example of Failure Modes and Effects Analysis (FMEA) results estimates for a specific MSR freeze valve design

Process Hazards Analyses (PHAs) were conducted to provide qualitative insights into FV design and performance

The PHA results were used to structure **fault tree** models to generate preliminary **failure rate**

Key Research Results

Insights from PHA studies

- A **high** *qualitative* **likelihood** that an operator would be unable to observe, diagnose, and correct a failure in time to prevent **spurious thawing**
	- Many individual component failures result in loss of cooling gas
	- Lack of dedicated instrumentation \rightarrow sparse information about specific failure
- The specific **safety** function of this freeze valve presented a **trade-off with operability**
	- More redundancy to thaw (drain) upon failure than to remain frozen (not drain)
	- Likelihood of inadvertent thawing (drain) could be reduced by improved I&C design

Insights from Fault Tree Analysis 1

Failure rate of FV-103 to remain frozen = 0.275/yr Generic solenoid valve spurious operation = 4.38E-3/yr

- Failure rate of FV-103 to thaw when requested = 2.20E-5/d Generic solenoid valve failure to close = 1.0E-3/d
- The *quantitative* failure rate estimates suggest that freeze valve reliability may be **significantly different from mechanical valves**

- 2) What are the consequences?
	- 3) How likely is it?

¹ For more detail, see Tables A-1, A-2, and A-3 In EPRI Report No. 3002018340

Examples of SiD Application

Chronology: SiD Applied to Commercial Systems

Future: Application of SiD to Fusion Systems

July 2022-Present: General Atomics Fast Modular Reactor (FMR) SiD Strategy

October 2022-Present: TerraPower Molten Chloride Fast Reactor (MCFR) SiD Strategy

February 2021: Hybrid SiD Approach for Commercial Molten Salt Reactor (MSR) Customer

June 2019: Hazard and Operability Study (HAZOP) of Kairos Power Forced Convection Loop (FCL-2)

October 2015: What-If Analysis of FLiBe Energy Liquid Fluoride Thorium Reactor (LFTR)

Image Credit: EPRI Report No. 3002005460

Figure 2-1 Reference LFTR design schematic [Flibe Energy, 2015].

What-If Analysis: FLiBe Energy's Liquid Fluoride Thorium Reactor (LFTR)

Summarized in EPRI Report No. 3002005460

Reference LFTR design schematic [Flibe Energy, 2015].

Image Credit: EPRI Report No. 3002005460

Interaction Matrix: Kairos Power FCL-2 Loop

Refer to EPRI Report No. 3002015752 (Section 4 & Appendices A-B for more information)

Key:

Y= interact during normal operation

BX:

B=potential for interaction if the integrity of a barrier between fluids is compromised,

X=notes number for location in which interaction could take place

N= no potential for interaction based on given schematic

Table 4-1 **FCL-2 subsystems and functions**

Name	Functional Description	Working Fluid(s)	Major Components
Salt Loop and Drain Tank	Circulate salt around the loop and add heat to salt loop	Molten FliBe	Salt lines, salt pump, heaters, flowmeter, valves, drain tank, primary FliBe-air shell and tube heat exchanger, surge tank
Freeze Valve and Freeze Valve Cooling/Control Valve Work Gas	Supply gas to control of freeze and control valves	Compressed air	Compressed air and compressed air supply lines, control and pressure relief valves
Salt Heat Removal	(1) Remove heat added by heaters in salt loop and transport to ultimate heat sink (2) Provide ancillary cooling to pump jacket, surge tank, and sample removal	Air, water	Secondary air-water gas recirculatory heat exchanger, valves, air and water lines
Cover Gas Supply	Supply argon to control corrosion and set the pressure in the system	Argon	Argon supply and supply lines, control and relief valves, vacuum gauge, 3 relief valves
Vacuum System	Evacuate pockets of gas before filling salt loop (only used during fill stage)	"Used" argon	Vacuum cart, filters, control and freeze valves
Room Ventilation	Provide a flow path for discharge of "used" argon and room atmosphere	Air, "used" argon	Ventilation unit and HEPA filters
Intended uses for Kairos Power FCL-2:			
Primary function is to serve as a materials compatibility test loop that facilitates the exposure of coupons of structural materials to circulating molten FLiBe for 1000s of hours			
Will also be used as a limited testing ground for the behavior of select components (e.g., valves, pumps, heat exchangers, etc.) exposed to a FLiBe salt environment			
Intended Operating Environment for Kairos Power FCL-2:			
Working fluid: 20-50 kg (~4 gal) of molten FLiBe			
Operating temperature range: 650-700°C			

Safety-in-Design (SiD) Approach for GA FMR

GA FMR Results by Category and Reactor Concept Concept

VANDERBILT School of Engineering

7% of all PIEs: Potentially unique to gas-cooled reactors

13% of all PIEs: PLOFC

20% of all PIEs: Air/Water ingress

30% of all PIEs: DLOFC

Lessons Learned

Methodology Insights (1 of 2)

- Early SiD methods offer a risk-informed^{*} approach for assessment of early-stage advanced reactor design risk and operability
	- Can be performed incrementally and iteratively
- These qualitative and semi-quantitative hazard/risk assessments can help:
	- 1. Incorporate safety into the design process
	- 2. Identify operability issues for design attention
	- 3. Incrementally build safety case
	- 4. Identify/prioritize necessary research and development

*The term "risk-informed" used here is consistent with NEI 18-04, *Risk-Informed Performance-Based Guidance for Non-Light Water Reactor Licensing Basis Development*, and NUREG 1.233, *Guidance for a Technology-Inclusive, Risk-Informed, and Performance-Based Methodology to Inform the Licensing Basis and Content of Applications for Licenses, Certifications, and Approvals for Non-Light-Water Reactors*

Methodology Insights (2 of 2)

- If will be important to plan for when iterations of safety analyses are to be done throughout the project cycle. Aspects to be considered include:
	- How often?
	- What triggers "for cause" re-appraisals (e.g., design changes)
	- Progression of safety analysis tools as the design matures
	- Alignment of SiD iterations to:
		- Stages in the design process, and/or
		- Technology Readiness Level (TRL) determinations

Thanks to:

- **Kairos Power**
- Southern Company
- General Atomics
- Flibe Energy
- Oak Ridge National Laboratory
- UCLA (B. John Garrick Institute for the Risk Sciences)

The People Who Helped Us Refine the Methodology (along with others)

References (i)

- NRC submittals
	- Southern Company/Electric Power Research Institute (2019). Molten Salt Reactor Experiment (MSRE) Case Study Using Risk-Informed, Performance-Based Technical Guidance to Inform Future Licensing for Advanced Non-Light Water Reactors, NRC Document identifier: ML19249B632.
	- General Atomics (2024). "Nuclear Technologies and Materials Advanced Reactor Concepts-20: Fast Modular Reactor Safety Approach and Probabilistic Risk Insights," Document No. 30599200R0041, Revision 1. NRC Document identifier: ML24234A331.
- EPRI Reports
	- EPRI. (2015). Program on Technology Innovation: Technology Assessment of a Molten Salt Reactor Design, The Liquid-Fluoride Thorium Reactor (LFTR), EPRI Report 3002005460, Palo Alto, CA: Electric Power Research Institute.
	- EPRI. (2017a). Program on Technology Innovation: Early Integration: EPRI Workshop on Process Hazard Analysis to Probabilistic Risk Assessment for Advanced Reactors Proceedings: Vanderbilt University, Nashville, TN, July 18-19, 2017, EPRI Report 3002011916, Palo Alto, CA: Electric Power Research Institute.
	- EPRI. (2017b). Expanding the Concept of Flexibility for Advanced Reactors: Refined Criteria, a Proposed Technology Readiness Scale and Time-Dependent Technical Information Availability, EPRI Report No. 3002010479, Palo Alto, CA: Electric Power Research Institute.
	- EPRI. (2018). Program on Technology Innovation: Early Integration of Safety Assessment into Advanced Reactor Design— Preliminary Body of Knowledge and Methodology, EPRI Report 3002011801, Palo Alto, CA: Electric Power Research Institute.
	- EPRI. (2019). Program on Technology Innovation: Early Integration of Safety Assessment into Advanced Reactor Design—Project Capstone Report, EPRI Report 3002015752, Palo Alto, CA: Electric Power Research Institute.
	- EPRI. (2020). Compilation of Molten Salt Reactor Experiment (MSRE) Technical, Hazard, and Risk Analyses: A Retrospective Application of Safety-in-Design Methods, EPRI Report 3002018340, Palo Alto, CA: Electric Power Research Institute.

References (ii)

- Journal Articles
	- Chisholm, B., Krahn, S.L., & Fleming, K.N. (2020a). A Systematic Approach to Identify Initiating Events and its Relationship to Probabilistic Risk Assessment: Demonstrated on the Molten Salt Reactor Experiment, Progress in Nuclear Energy, 129, 103507.
	- Chisholm, B., Krahn, S.L., & Sowder, A.G. (2020b). A Unique Molten Salt Reactor Feature The Freeze Valve System: Design, Operating Experience, and Reliability, Nuclear Engineering and Design, 368.
	- Harkema, M., Krahn, S., & Marotta, P. (2024a). Technical Brief: Safeguardability Analysis of a Molten Salt Sampling System Design, Journal of Nuclear Engineering and Radiation Science, 10, 039893.
	- Harkema, M., Krahn, S., Marotta, P., Burak, A., Sun, X., Sabharwall, P. (2024). Development and Demonstration of a Prototype Molten Salt Sampling System, submitted to Nuclear Technology.
	- Choi, H., Bolin, J., Gutierrez, O., Curiac, R., Alavai, M., Virgen, M., Chin, E., Beaver, J., Brocheny, P., Beausoleil, G., Yacout, A.M., Rodriguez, S., Corradini, M., Kim, D., Krahn, S.L., & Thornsbury, E. (2024). "Progress in Fast Modular Reactor Conceptual Design," Nuclear Technology 1-14. https://doi.org/10.1080/00295450.2024.2319925
	- Ibrahim, I., Harkema, M., Krahn, S., Choi, H., Bolin, J., Thornsbury, E. (2024). "Literature Review of Preliminary Initiating Events for a Gas- Cooled Fast Reactor Conceptual Design," submitted to Nuclear Technology.
	- Krahn, S., & Sowder, A. (2023). Public-Private Partnering in Nuclear Reactor Development Historical Review and Implications for Today, Journal of Nuclear Engineering and Radiological Sciences, (10)3.
- Dissertations
	- Chisholm, B. (2020). Development of a Technology-Inclusive Methodology to Analyze the Environmental, Safety, and Health Risks Associated with Advanced Nuclear Reactor Designs as Demonstrated on the Molten Salt Reactor Experiment, Unpublished Dissertation,
Vanderbilt University, Nashville, TN.
	- Harkema, M. (2024). Development and Demonstration of a Risk-Informed Molten Salt Sampling System for Molten Salt Reactors, Unpublished Dissertation, Vanderbilt University, Nashville, TN.

References (iii)

EPRI

■ Conference Papers

- Chisholm, B., Krahn, S., Marotta, P., & Croff, A. (2017). Preliminary Risk Assessment of a Generalized Molten Salt Reactor Off-Gas System, Transactions of the American Nuclear Society, 117(1), pp. 221-224.
- Chisholm, B., Krahn, S., Afzali, A., & Sowder, A. (2018a). Application of a Method to Estimate Risk in Advanced Nuclear Reactors: A Case Study on the Molten Salt Reactor Experiment, presented at 14th International Conference on Probabilistic Safety Assessment and Management (PSAM 14), September 16-21, 2018, Los Angeles, CA.
- Chisholm, B., Krahn, S., Croff, A., Marotta, P., Sowder, A., & Smith, N. (2018b). A Technology Neutral Safety Assessment Tool for Advanced Nuclear Reactors: Preliminary Hazard Assessment and Component Reliability Database for the Molten Salt Reactor Experiment, presented at 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018), April 8-11, 2018, Charlotte, NC.
- Chisholm, B., Krahn, S., Sowder, A., & Afzali, A. (2019). Development of a Methodology for Early Integration of Safety Analysis into Advanced Reactor Design, presented at 2019 International Topical Meeting on Probabilistic Safety Assessment and Analysis (PSA 2019), April 28-May 3, Charleston, SC.
- Harkema, M., Krahn, S., & Marotta, P. (2019). Evaluating the MSRE Sampler-Enricher: A Fresh Perspective, Transactions of the American Nuclear Society, 121(1), pp. 1193-1196.
- Harkema, M., Krahn, S., & Marotta, P. (2020a). Advanced Reactor System Design Insights from STAMP-based Analysis of Historical Parallels, presented at the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, November 1-5, 2020, Venice Italy.
- Harkema, M., Marotta, P., & Krahn, S. (2021). Fuel Salt Sampling and Enriching Technology Design Development—Project Update, Transactions of the American Nuclear Society, 124(1), pp. 465-467.
- Harkema, M., Krahn, S., Marotta, P., & Sowder, A. (2022a). Incorporation of Historical Information into the Advanced Reactor Design Process: A Case Study on the Development of a Molten Salt Sampling System, Transactions of the American Nuclear Society, 127(1), pp. 864-867.
- Harkema, M., Krahn, S., & Marotta, P. (2022b). Fuel Salt Sampling and Enriching Technology Design Development—Interfacing Systems Analysis and Project Update, Transactions of the American Nuclear Society, 126(1), pp. 688-691.
- Harkema, M., Marotta, P., & Krahn, S. (2022d). Model Refinement Studies for Molten Salt Freeze Port Conceptual Design Using COMSOL, Transactions of the American Nuclear Society, 126(1), pp. 87-90.
- Harkema, M., Krahn, S., & Marotta, P. (2023a). Expert Elicitation for Collection of Stakeholder Input for a Molten Salt Sampling System Design, Transactions of the American Nuclear Society, 129(1), pp. 796-799.
- Harkema, M., Krahn, S., & Marotta, P. (2023b). Fuel Salt Sampling and Enriching Technology Design Development—Failure Modes and Effects Analysis and Safeguardability Checklist Analysis, Transactions of the American Nuclear Society, 128(1), pp. 522-525.

Pertinent ISO/IEC Standards

- ISO. (2019). Risk Management Risk Assessment Techniques, ISO 31010, Geneva, Switzerland: International Standards Organization.
- ISO. (2018). Risk Management Guidelines, ISO 31000, Geneva, Switzerland: International Standards Organization.
- ISO. (2022). Risk management—Vocabulary, ISO 31073, Geneva, Switzerland: International Standards Organization.
- ISO/IEC. (2018). Failure Modes and Effects Analysis (FMEA and FMECA), ISO/IEC-60812, Geneva, Switzerland: International Electrotechnical Commission.

TOGETHER…SHAPING THE FUTURE OF ENERGY®

www.epri.com | © 2024 Electric Power Research Institute, Inc. All rights reserved

30 © 2024 Electric Power Research Institute, Inc. All rights reserved.