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Introduction



© 2024 Electric Power Research Institute, Inc. All rights reserved.4

 Interest in advanced (Generation IV) nuclear reactor designs has continued to expand
 Many advanced reactor designs are at an early stage of the design process and differ 

significantly from Light Water Reactor (LWR) designs
 Previous risk assessment efforts have been largely based LWR design details, 

experience, and analysis
– However, benefits of a risk-informed approach have been realized

 The Safety-in-Design (SiD) project1 was developed in consultation with industry, as 
represented in the EPRI Advanced Reactor Technical Working Group, to construct a 
methodology that would use existing risk assessment tools to: 

1. Provide risk-informed insights early in the design process, 
2. Develop the safety case for the design, 
3. Incrementally build that safety case, and 
4. Contribute to the development more quantitative insights, such as Probabilistic Risk 

Assessment (PRA)—as the reactor design matures. 

Motivation

1 Originally titled PHA-to-PRA project, see EPRI report No.’s 
3002018340, 3002015752, and 3002011917 for further details
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EPRI SiD Methodology Benefits
 Early integration of safety assessment into the design process using fit-for-purpose tools and methods can support:

– Incremental development of the safety case for advanced reactor designs
– Earlier identification of any needed R&D in time to benefit design
– Efficient design iteration and improvement
– Enhanced early regulatory engagement

 Established qualitative and semi-quantitative Process Hazard Analysis (PHA) methods can be used to provide a 
bridge to quantitative risk assessment. 
– Safety analysis technique not rooted in LWR technology

 Demonstration of a safety assessment approach that can be efficiently integrated with early stages of design and 
advance with maturing design
– Recognizes the existence of unknowns for new and varying technologies

 Demonstration of the importance of early integration of SiD for the purpose of identifying and prioritizing risk-
significant design issues, technical uncertainty, and targeted needs for additional analysis/R&D/testing

 Demonstration of a SiD methodology that could support a risk-informed and performance-based licensing 
framework

Pre-conceptual 
Design

Conceptual

Preliminary Design

Final Design

Operating 
Commercial Reactor
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Background on SiD Methodology
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Image credit: EPRI Report 3002015752
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Organizing Concept: Process Hazards Analysis (PHA)

 A PHA is a set of systematic 
techniques structured to identify 
potential hazards and operability 
problems as part of the design 
process

 Most PHA methods focus on 2 questions 
from the Risk Triplet 
(in bold)
– What can go wrong?
– How likely is it?
– What are the consequences?

 Most frequently a qualitative systematic 
evaluation of process upsets & how 
event sequences promulgate - can be a 
starting point for quantitative analysis

 Benefits
– Powerful tool for early stages of design

 Pull together design and safety analysts
– Adaptable, amenable to iteration with increasing detail

 Methods recognized by NRC, DOE & others:
– ANSI/ASME/ANS RA-S-1.4-2021: Probabilistic Risk Assessment 

Standard for Advanced Non-Light Water Reactor Nuclear Power 
Plants

– NEI 18-04 & NRC Reg. Guide 1.233: Guidance for a Technology-
Inclusive, Risk-Informed, and Performance-Based Methodology to 
Inform the Licensing Basis and Content of Applications for 
Licenses, Certifications, and Approvals for Non-Light-Water 
Reactors

– DOE-STD-1189-2016: Integration of Safety into the Design Process
– DOE-STD-1628-2013: Development of Probabilistic Risk 

Assessments for Nuclear Safety Applications
– NUREG-1513: Integrated Safety Analysis Guidance Document
– NUREG-1520: Standard Review Plan for the Review of a License 

Application for a Fuel Cycle Facility
– Series of ISO Standards Associated with ISO-31000, Risk 

Management
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• Early identification can be informed by past 
experience with other reactor design 
concepts

• Informal brainstorming can tend toward 
familiar scenarios from LWR experience 

• often “core-centric”

• Such an exercise does not replace a 
systematic hazards identification and 
phenomenological study (e.g., HAZOP, 
FMEA, Phenomenon Identification and 
Ranking Table [PIRT], etc.)

• Stylized scenarios (e.g., LBLOCA, ATWS) can 
mask other important drivers of risk for 
advanced reactor designs (e.g., TMI and 
SBLOCA)

Image credit: EPRI Report 3002015752

NEI 18-04: Preliminary Identification of 
Hazardous Scenarios
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Iterative Nature of SiD Methodology

 PHA tool selection 
depends on, e.g.:

– Maturity of design
– Understanding of 

hazards and 
phenomena

– Type of facility 
– Intended use of 

results

Image credit: EPRI Report 3002015752
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Using PHA Results to Support Quantitative Risk 
Estimates—As Demonstrated on a Freeze Valve
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MSRE Case Study: Methodology Application Matrix

Operating 
Experience 
and 
Stylized 
Accidents

Hazard 
Identification

Key 
Phenomena 
Identification

HAZOP 
Study

Event 
Sequence 
Development

Quantitative 
Consequence  
Analysis

FMEA FTA Component 
Reliability 
Data

Quantitative 
ETA

Risk 
Metric 
Selection

Off-Gas 
System and 
Component 
Cooling 
System

Fuel Salt 
Loop

Freeze Valve

Fuel 
Processing 
System

Refer to EPRI Report No. 3002015752 (Sections 2-3) and EPRI report No. 3002018340 for more information
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Freeze Valves in Molten Salt Reactors (MSRs)
High operating temperatures in MSRs  challenging environment for mechanical valves

Research goals:
– Risk insights for design, safety, and/or performance?
– Likelihood (qualitative) of failure?
– Reliability/failure rates for quantitative risk assessment?

Image Credit: Chisholm, B.M., Krahn, S.L., & Sowder, A.G. (2020) and Chisholm, B. (2020)

Schematic of FV-103 
(top view)
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Evaluations of a Freeze Valve Design

Identification/
Description

Failure 
Mode Effect Safety Systems

“Supply” block 
valve for HCV-
919B1 
(normally 
open)

Spuriously 
closes

Closes HCV-919B1, 
isolates cooling 
gas flow to FV

Operator alarm on high 
freeze valve temperature, 
indication of freeze valve 
condition

Solenoid valve 
HCV-919B2

Spuriously 
closes

Closes HCV-919B1, 
isolates cooling 
gas flow to FV

Operator alarm on high 
freeze valve temperature, 
indication of freeze valve 
condition

Temperature 
switch TS-
FV103-1A2

Spuriously 
opens

De-energizes HCV-
919B2 and HCV-
919A2, isolates 
cooling gas flow to 
FV

Operator alarm on high 
freeze valve temperature, 
indication of freeze valve 
condition

Thermocouple 
TE-FV103-1A

Failure 
(indicates 
lower temp 
than actual)

First, close TS-1A1

Then, open TS-1A2

Redundant temperature 
indication (TE-FV103-1B) 
displayed on recorder in 
aux control room

Process Hazards Analyses (PHAs) were 
conducted to provide qualitative insights 

into FV design and performance

The PHA results were used to structure fault tree 
models to generate preliminary failure rate 

estimates for a specific MSR freeze valve designExample of Failure Modes and Effects Analysis (FMEA) results
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Key Research Results
Insights from PHA studies

 A high qualitative likelihood that an 
operator would be unable to observe, 
diagnose, and correct a failure in time to 
prevent spurious thawing
– Many individual component failures result in loss 

of cooling gas
– Lack of dedicated instrumentation  sparse 

information about specific failure

 The specific safety function of this freeze 
valve presented a trade-off with operability
– More redundancy to thaw (drain) upon failure 

than to remain frozen (not drain)
– Likelihood of inadvertent thawing (drain) could 

be reduced by improved I&C design

Insights from Fault Tree Analysis1

 The quantitative failure rate estimates 
suggest that freeze valve reliability may be 
significantly different from mechanical 
valves

1 For more detail, see Tables A-1, A-2, and A-3 In EPRI Report No. 3002018340

Key Methodology Takeaway:

Risk is risk! Can be qualitative and/or quantitative…
1) What can go wrong?

2) What are the consequences?
3) How likely is it?

Failure rate of FV-103 to remain frozen = 0.275/yr
Generic solenoid valve spurious operation = 4.38E-3/yr

Failure rate of FV-103 to thaw when requested = 2.20E-5/d
Generic solenoid valve failure to close = 1.0E-3/d
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Examples of SiD Application 
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Chronology: SiD Applied to Commercial Systems

Image Credit: Choi et al., (2024). Progress in Fast Modular Reactor 
Conceptual Design, Nuclear Technology.

Image Credit: EPRI Report No. 3002005460

Future: Application of SiD to Fusion 
Systems

July 2022-Present: General Atomics Fast 
Modular Reactor (FMR) SiD Strategy

October 2022-Present: TerraPower Molten 
Chloride Fast Reactor (MCFR) SiD Strategy

February 2021: Hybrid SiD Approach for 
Commercial Molten Salt Reactor (MSR) 
Customer

June 2019: Hazard and Operability Study 
(HAZOP) of Kairos Power Forced Convection 
Loop (FCL-2)

October 2015: What-If Analysis of FLiBe 
Energy Liquid Fluoride Thorium Reactor 
(LFTR)
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What-If Analysis: FLiBe 
Energy’s Liquid Fluoride 
Thorium Reactor (LFTR) 

LFTR System or 
Component

Hazard Scenario

Reactor 
Vessel/Containment 
Cell

Unintentional control rod withdrawal

Loss of blanket salt

Premature criticality during filling
Inflow of contaminants or unexpected isotopic ratio in the fuel 
salt

Inadvertent release of fission gas from reactor cell and/or 
containment

Fuel Salt Processing Hydrogen reacts with fluorine in chemical processing system

Excess pressure in the helium bubbler

Primary Heat 
Exchanger

Minor failure in the primary heat exchanger

Major failure within the primary heat exchanger

Sealed housing for the electric drive motors for pumps fail

Blanket Salt 
Processing

Inadequate removal of Pa or U in the blanket salt

Electrolytic cell is improperly operated

Off-Gas Processing 
and Treatment

Potassium hydroxide (KOH) is released

Drain Tank Improper or inadequate cooling of the drained fuel salt

A partially thawed piece of the salt plug or other solid mass 
obstructs piping to the drain tank

Summarized in EPRI Report No. 3002005460

Image Credit: EPRI Report No. 3002005460
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Interaction Matrix: Kairos Power FCL-2 Loop

FLiBe Air NaK Water Argon
FLiBe
Air B1
NaK B2 B3
Water B7 B4 N
Argon Y B5 B6 N
Key:
Y= interact during normal operation
BX: 

B=potential for interaction if the integrity of a barrier between 
fluids is compromised, 
X=notes number for location in which interaction could take 
place

N= no potential for interaction based on given schematic

Refer to EPRI Report No. 3002015752 (Section 4 & Appendices 
A-B for more information)
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Safety-in-Design (SiD) Approach for GA FMR

Preliminary Initiating Event 
(PIE) Literature Review 
(Completed FY24Q1)

Component and 
Functional Failure Modes 

and Effects Analysis 
[FMEA] (in process)Master Logic 

Diagram [MLD] (in 
process)

As documented within:
General Atomics. (2024). Nuclear 

Technologies and Materials 
Advanced Reactor Concepts-20, Fast 

Modular Reactor Safety Approach 
and Probabilistic Risk Insights, NRC 

ADAMS Accession No. 
ML24234A331.
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GA FMR Results by Category and Reactor 
Concept Concept 

Reviewed

# of 
Unique 

PIEs 

# of 
References

GFR 192 28

HTGR 216 48

VHTR 101 20

UK GCR 40 10

Total 549 106

30% of all PIEs: DLOFC

20% of all PIEs: Air/Water ingress

13% of all PIEs: PLOFC

7% of all PIEs: Potentially unique to 
gas-cooled reactors
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Lessons Learned



© 2024 Electric Power Research Institute, Inc. All rights reserved.23

 Early SiD methods offer a risk-informed* approach for assessment 
of early-stage advanced reactor design risk and operability

– Can be performed incrementally and iteratively
 These qualitative and semi-quantitative hazard/risk assessments can 

help:
1. Incorporate safety into the design process
2. Identify operability issues for design attention
3. Incrementally build safety case
4. Identify/prioritize necessary research and development

Methodology Insights (1 of 2)

*The term “risk-informed” used here is consistent with NEI 18-04, Risk-Informed Performance-Based Guidance for Non-Light Water Reactor 
Licensing Basis Development, and NUREG 1.233, Guidance for a Technology-Inclusive, Risk-Informed, and Performance-Based Methodology to 
Inform the Licensing Basis and Content of Applications for Licenses, Certifications, and Approvals for Non-Light-Water Reactors
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Methodology Insights (2 of 2)

 It will be important to plan for when iterations of safety 
analyses are to be done throughout the project cycle. 
Aspects to be considered include:
– How often?
– What triggers “for cause” re-appraisals (e.g., design changes) 
– Progression of safety analysis tools as the design matures 
– Alignment of SiD iterations to: 
 Stages in the design process, and/or 
 Technology Readiness Level (TRL) determinations
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