ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
TerraPower plans to invest in South African HALEU laser enrichment technology
TerraPower announced today that it has signed a term sheet with ASP Isotopes Inc. as the first step of a planned investment in the construction of a high-assay low-enriched uranium (HALEU) enrichment facility and the eventual purchase of HALEU produced at the facility to fuel its Natrium fast reactors.
Challenge: Establish the scientific basis for modern low-dose radiation regulation.
How: Establish the scientific basis and guidelines for the health effects of low-dose radiation and replace the current Linear-No-Threshold approach with a modern, science-backed model for nuclear radiation safety.
Background: The Linear-No-Threshold (LNT) model is based on high dose rate nuclear weapons data. Its application to nuclear reactor, medial, and irradiation applications is tenuous at best. New evidence in radiation and chemical toxicity fields is suggesting that LNT models are likely overly conservative, and the way in which they are used makes this conservatism inordinately expensive. While LNT is very straightforward to regulate, scientific evidence from the past several decades has indicated that low doses of radiation do not pose risk of cancer in a linear fashion, as is well-established among higher doses of radiation.
Today, the principle of As Low As Reasonably Achievable (ALARA) has in many cases lost the "reasonable" aspect, as nuclear power plants micromanage every milliroentgen (mR) of worker dose in order to meet metrics of dose reduction. Unnecessary fear of low doses of radiation has adversely impacted safety and enabled cumulative costs to build up within the U.S. nuclear energy industry such that building and maintaining plants is now overly cumbersome and expensive.
If the LNT model can be replaced with a modern, scientifically defensible model, underpinned by the latest microbiology research methods (genomics, proteomics, metabolomics, etc.), we can achieve both higher levels of safety while reducing unnecessary operations and waste disposal costs. One approach may be to establish a generally-accepted common measure of risk and a de minimis “threshold of regulatory concern,” socialized, and incorporated into relevant standards and regulation. Ultimately, this effort could enable broader, more cost-effective application of nuclear technologies, which in turn would provide significant additional benefits in cleaner air, less carbon, and more lives saved from deadly diseases.
Last modified May 12, 2017, 1:22am CDT