ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Challenge: Establish the scientific basis for modern low-dose radiation regulation.
How: Establish the scientific basis and guidelines for the health effects of low-dose radiation and replace the current Linear-No-Threshold approach with a modern, science-backed model for nuclear radiation safety.
Background: The Linear-No-Threshold (LNT) model is based on high dose rate nuclear weapons data. Its application to nuclear reactor, medial, and irradiation applications is tenuous at best. New evidence in radiation and chemical toxicity fields is suggesting that LNT models are likely overly conservative, and the way in which they are used makes this conservatism inordinately expensive. While LNT is very straightforward to regulate, scientific evidence from the past several decades has indicated that low doses of radiation do not pose risk of cancer in a linear fashion, as is well-established among higher doses of radiation.
Today, the principle of As Low As Reasonably Achievable (ALARA) has in many cases lost the "reasonable" aspect, as nuclear power plants micromanage every milliroentgen (mR) of worker dose in order to meet metrics of dose reduction. Unnecessary fear of low doses of radiation has adversely impacted safety and enabled cumulative costs to build up within the U.S. nuclear energy industry such that building and maintaining plants is now overly cumbersome and expensive.
If the LNT model can be replaced with a modern, scientifically defensible model, underpinned by the latest microbiology research methods (genomics, proteomics, metabolomics, etc.), we can achieve both higher levels of safety while reducing unnecessary operations and waste disposal costs. One approach may be to establish a generally-accepted common measure of risk and a de minimis “threshold of regulatory concern,” socialized, and incorporated into relevant standards and regulation. Ultimately, this effort could enable broader, more cost-effective application of nuclear technologies, which in turn would provide significant additional benefits in cleaner air, less carbon, and more lives saved from deadly diseases.
Last modified May 12, 2017, 1:22am CDT