ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Challenge: Close the nuclear fuel cycle.
How: Firmly establish the pathway that leads to closing the nuclear fuel cycle to support the demonstration and deployment of advanced fission reactors, accelerators, and material recycling technologies to obtain maximum value while minimizing environmental impact from using nuclear fuel.
Background: Addressing nuclear waste disposal and closing the nuclear fuel cycle would have many significant public benefits. It must be commensurate with the design of any emerging commercial nuclear products. Reducing the stockpiles of used nuclear fuel and excess stocks of highly-enriched uranium would significantly reduce the worldwide potential for proliferation of nuclear materials. The costs and maintenance of large independent spent fuel storage facilities would be greatly minimized, saving billions of dollars in waste storage and associated security costs. Additionally, it would include streamlined government regulations and permit expedited regulatory reviews, certification, and licensing for advanced reactors. Furthermore, it would enable enhanced public support for nuclear technologies and increased governmental funding for the development of advanced high-level waste-burning reactors.
Adoption of an advanced reactor-based nuclear waste disposal solution through closing the nuclear fuel cycle would enable advanced reactors to burn remaining inventories of used nuclear fuel that are currently stored at commercial and government nuclear facilities to produce significant amounts of electricity. Nuclear waste would be minimized, eliminating the need for large waste disposal facilities. Concepts, in addition to reactor solutions, would also be possible and developed, such as innovative and safe approaches utilizing Accelerator Driven Systems. These systems remove the long-term radiotoxicity of spent fuel, generate energy to recover its cost, eliminate the need for a large geological repository, and avoid the use of fuel reprocessing steps.
The current approach to the U.S. nuclear fuel cycle was formulated for reasons that are less convincing to many than they may have seemed generations ago. This has left the nuclear industry highly vulnerable to a stalled nuclear waste disposal pathway. The "most promising" fuel cycles very well could be the fuel cycle families identified in the U.S. Department of Energy’s Fuel Cycle Options Nuclear Fuel Cycle Evaluation and Screening Study report series (fuelcycleevaluation.inl.gov). This evaluation and screening work evaluated the breadth of fuel cycle options available in the context of nine evaluation metrics (waste management, proliferation risk, material security risk, safety, environmental impact, resource utilization, development and deployment risk, institutional issues, and financial risk/economics).
Last modified May 12, 2017, 1:22am CDT