ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
N. Prolingheuer, M. Herbst, B. Heuel-Fabianek, R. Moormann, R. Nabbi, B. Schlögl, J. Vanderborght
Nuclear Technology | Volume 168 | Number 3 | December 2009 | Pages 924-930
Dose/Dose Rate | Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection | doi.org/10.13182/NT09-A9328
Articles are hosted by Taylor and Francis Online.
At sites with powerful particle accelerators, the problem of groundwater activation by direct neutron radiation arises. Licensing of particle accelerators requires evidence that groundwater activation is within the legal limits and thus will not endanger workers, the public, or the environment.In this study we focus on the following radionuclides: 14C, 41Ca, 45Ca, 36Cl, 55Co, 57Co, 60Co, 3H, 54Mn, 24Na, 32P, 35S, 32Si, and 50V. The conventional approach for calculating activation of soil and groundwater is described and utilized for a fictive 5-MW proton accelerator at Jülich, Germany, with a beam loss of 1 Wm-1. An updated overview of partition coefficients for relevant radionuclides in sand, clay, loam, and organic soils is presented. Based on the two aforementioned methods, groundwater activation is estimated with a simplified homogeneous groundwater transport model. The results indicate 3H, 14C, and 36Cl as the most relevant radionuclides concerning the resultant activity concentrations and estimated dose rates at the site boundary. For this fictive test case, the site boundary is located a distance 250 m downstream of the accelerator, which leads to acceptable risk for the public, given the legal standards.