ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Brookhaven experiment offers new way to study nucleus structure
Recently published research done at Brookhaven National Laboratory is offering a new, high-energy method for studying the structure of atomic nuclei. Scientists have been using the Solenoidal Tracker at the Relativistic Heavy Ion Collider (RHIC), known as STAR, to track the particles produced by ion collisions in the particle accelerator. Their research was published earlier this month in Nature.
Yican Wu, Mengyun Cheng, Wen Wang, Jing Song, Shengpeng Yu, Pengcheng Long, Liqin Hu
Nuclear Technology | Volume 201 | Number 2 | February 2018 | Pages 155-164
Technical Paper | doi.org/10.1080/00295450.2017.1411717
Articles are hosted by Taylor and Francis Online.
Dose conversion coefficients are important physical quantities in radiation dosimetry assessment and can be derived from Monte Carlo simulation based on human computational phantoms. In order to accurately evaluate the dose to a human body especially for a Chinese female, a precise whole-body Chinese female computational phantom named Rad-Human was constructed based on high-resolution digital color slice images of an adult female body. Rad-Human includes 46 tissues and organs with a minimum voxel size of 0.15 × 0.15 × 0.25 mm for head and neck and 0.15 × 0.15 × 0.5 mm for other regions, and it contains more than 28.8 billion voxels. Conversion coefficients and effective doses of external radiation, specific absorbed fractions, and S values of internal radiation for different energies for Rad-Human were calculated. The calculated dose conversion coefficients were reasonable comparing and analyzing the relationship between dose and organ characteristics with those values of the International Commission on Radiological Protection (ICRP) reference phantom. Based on the information and simulation results of Rad-Human, a set of more complete data of dose conversion coefficients in the radiation field was constructed for a Chinese adult female. Dose discrepancies that were observed were due to differences of body structures between the two phantoms. The differences of dose conversion coefficients between Rad-Human and the ICRP reference phantom demonstrate that Rad-Human can more accurately assess the exposure dose especially for a Chinese female.