ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Xiaonan Liu, Yi Ding, Xirui Lu
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 64-69
Technical Paper | doi.org/10.1080/00295450.2017.1292810
Articles are hosted by Taylor and Francis Online.
In this work, the immobilization of simulated radionuclide 90Sr by fly ash-slag-metakaolin–based geopolymer was investigated. It was found that the thermal stability (high-temperature and freeze-thaw resistance) of the geopolymer waste forms were better than that of cement. The geopolymer waste forms can acquire a compressive strength up to 10 MPa after 2 h calcination at 1000°C. Furthermore, the leaching tests revealed that the fly ash-slag-metakaolin–based geopolymer waste forms had lower cumulative fraction leaching rates of 90Sr than that of cement. These results gave encouragement for the idea that the fly ash-slag-metakaolin–based geopolymers could be used as low cost and high efficiency host materials for the immobilization of radioactive wastes.