ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Robert B. Hayes
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 209-218
Technical Paper | doi.org/10.13182/NT16-98
Articles are hosted by Taylor and Francis Online.
Some quality considerations for use in isotopic dating are presented to identify and correct heretofore unidentified overestimate scenarios. These include to a lesser degree the statistical interpretation issues with linear-least-squares fitting results but more importantly the isotope effect in the individual components of the isochron coefficient ratios. By taking into consideration the isotope effect (differential mass diffusion rates) when measuring isotopic ratios from very old samples, the distribution dependency in the coefficient ratios will cause a bias if isotopic diffusion rates are not identical throughout a sample. The isotope effect is that isotopes having a smaller atomic mass will diffuse faster throughout a medium than will their heavier counterparts causing concentration gradients of their ratios even when there are no contributions from radioactive decay. The application to Rb/Sr dating is evaluated and shown to result in expected age overestimates when isotopic ratios are employed to linearize the isochron. A suggested method to test for this effect is argued to require rigorous statistical analysis. An associated optimal sampling technique would involve using single-grain etching. It is also shown that the only method to fully eliminate the isotope effect is to not use isotopic ratios at all in radioisotopic dating as the physics do not require the use of isotopic ratios for geochronological dating. However, without the ratios, the data are inherently noisy.