ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Fighting fatigue and maintaining 10 CFR Part 26 compliance
Fatigue has been identified as a major risk factor in industrial accidents. According to the National Safety Council, 13 percent of workplace injuries can be attributed to fatigue.1 Other research indicates that working 12 hours per day is associated with a staggering 37 percent increase in risk of injury.2 Considering fatigue was a contributing factor to major nuclear accidents at Chernobyl and Three Mile Island, it makes sense that the Nuclear Regulatory Commission imposes hefty fines to ensure strict adherence to its fatigue management regulations—particularly, Code of Federal Regulations Title 10, Part 26, “Fitness for Duty Programs.”
Erich A. Schneider, William C. Sailor
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 379-387
Technical Paper | Miscellaneous | doi.org/10.13182/NT08-A3963
Articles are hosted by Taylor and Francis Online.
We address the long-term uranium supply from first principles, summarizing estimates of the abundance of uranium in the crust of the earth as a function of concentration and accessibility. Defining the supply curve as a functional relationship between the cumulative quantity of uranium extracted and the cost of extracting the next unit of uranium, we note that a supply curve requires a crustal abundance model plus a correlation between ore grade and extraction cost. Surveying a number of supply curves that appear in the literature, we observe that while estimates vary widely (we observe an order of magnitude difference in forecasts of the quantity of uranium available at $100/kg U or less), they generally reflect expectations that uranium availability will be significantly greater than the Red Book numbers imply. Furthermore, by comparison with historical data for more than 40 other minerals, we show that the assumption of time invariance when formulating a supply curve is not borne out by experience. In fact, the price of most other minerals has decreased with time as well as with cumulative quantity extracted. Neither the Red Book nor the other supply curves we survey explicitly accounts for the unit-based technological learning that fosters this behavior.