ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Christoffer Gottlieb, Vasily Arzhanov, Waclaw Gudowski, Ninos Garis
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 67-77
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3746
Articles are hosted by Taylor and Francis Online.
Support vector machines (SVMs), a relatively new paradigm in statistical learning theory, are studied for their potential to recognize transient behavior of detector signals corresponding to various accident events at nuclear power plants (NPPs). Transient classification is a major task for any computer-aided system for recognition of various malfunctions. The ability to identify the state of operation or events occurring at an NPP is crucial so that personnel can select adequate response actions. The Modular Accident Analysis Program, version 4 (MAAP4) is a program that can be used to model various normal and abnormal events in an NPP. This study uses MAAP signals describing various loss-of-coolant accidents in boiling water reactors. The simulated sensor readings corresponding to these events have been used to train and test SVM classifiers. SVM calculations have demonstrated that they can produce classifiers with good generalization ability for our data. This in turn indicates that SVMs show promise as classifiers for the learning problem of identifying transients.