ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. H. Trumbull, D. R. Harris
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 350-360
Technical Paper | Radiation Protection | doi.org/10.13182/NT06-A3739
Articles are hosted by Taylor and Francis Online.
The effect of material homogenization on the calculated gamma-ray dose rate was studied for several arrangements of typical pressurized water reactor (PWR) spent fuel pins in an air medium using the Monte Carlo code MCNP. The models analyzed increased in geometric complexity, beginning with a single fuel pin; progressing to small lattices, i.e., 3 × 3, 5 × 5, and 7 × 7 fuel pins; and culminating with a full 17 × 17 pin PWR bundle analysis. The fuel pin dimensions and compositions were taken directly from a previous study, and efforts were made to parallel this study by specifying identical flux-to-dose functions and gamma-ray source spectra.The analysis shows two competing components to the overall effect of material homogenization on the calculated dose rate. Homogenization of pin lattices tends to lower the effect of radiation channeling but increase the effect of source redistribution. Depending on the size of the lattice and the location of the detectors, the net effect of material homogenization on the dose rate can be insignificant, or it can range from a 6% decrease to a 35% increase relative to the detailed geometry model.