ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
D. W. Millsap, M. E. Cournoyer, S. Landsberger, J. Tesmer, Y. Wang
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 106-112
Technical Note | Materials for Nuclear Systems | doi.org/10.13182/NT14-47
Articles are hosted by Taylor and Francis Online.
Nylon 6,6 tensile specimens, conforming to the casing for self-contained fire extinguisher systems, have been irradiated using both an accelerator He++ ion beam and a 5-Ci PuBe neutron source to model the radiation damage these systems would likely incur over a lifetime of operation within glove boxes. Following irradiation, these samples were mechanically tested using standard practices as described in ASTM D638. The results of the He++ study indicate that the tensile strength of the nylon specimens undergoes some slight (<10%) degradation while other properties of the samples, such as elongation and tangent modulus, appear to fluctuate with increasing dose levels. The He++-irradiated specimens also have a noticeable level of discoloration corresponding to increasing levels of dose. The neutron-irradiated samples show a higher degree of mechanical degradation than the He++-irradiated samples.