ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
March 2025
Fusion Science and Technology
Latest News
Report spotlights energy sector’s growing nuclear investment
As part of a broader series on the future of global energy markets, S&P Global has released a report on examining the growing interest in nuclear power as the solution to many of the problems the energy sector faces.
To read the full details and conclusions of the report, click here.
Troy Unruh, Benjamin Chase, Joy Rempe, David Nigg, George Imel, Jason Harris, Todd Sherman, Jean-François Villard
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 308-315
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT13-122
Articles are hosted by Taylor and Francis Online.
As part of an Idaho State University (ISU)–led Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) collaborative project that includes Idaho National Laboratory (INL) and the French Alternative Energies and Atomic Energy Commission (CEA), flux detector evaluations were completed to compare their accuracy, response time, and long-duration performance. Special fixturing, developed by INL, allows real-time flux detectors to be inserted into various Advanced Test Reactor Critical Facility (ATRC) core positions to perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program included miniature fission chambers, specialized self-powered neutron detectors (SPNDs), and specially developed commercial SPNDs. Results from this program provide important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and yield new flux data required for benchmarking models in the ATR Life Extension Program (LEP) Modeling Update Project.