ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sherrell R. Greene
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 115-138
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-44
Articles are hosted by Taylor and Francis Online.
Between 1980 and 1995, Oak Ridge National Laboratory (ORNL) was engaged in an intense effort to understand commercial boiling water reactor severe accident phenomenology, severe accident progression, and the potential role of the reactor operator in severe accident mitigation. This paper presents a summary of the major findings and conclusions from that period. Both detailed accident- and plant-specific results are discussed. The author, who was a member of the ORNL research team that performed the work, offers a historical perspective on lessons learned, lessons ignored, and lessons forgotten from that period. The relevancy of these findings in the post-Fukushima world is addressed. The author discusses the evolution of the current risk-informed regulatory framework, and identifies some key questions to be addressed and critical steps to be taken to inform the development of the new nuclear safety construct required in the wake of the Fukushima Daiichi accident. Finally, the author closes by sharing an ethos of nuclear reactor safety that can guide a new generation of reactor safety professionals in the post-Fukushima era.