ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Michael F. Roche, Leonard Leibowitz, Jack L. Settle, Carl E. Johnson, Richard C. Vogel, Robert L. Ritzman
Nuclear Technology | Volume 96 | Number 1 | October 1991 | Pages 96-116
Technical Paper | Material | doi.org/10.13182/NT91-A35536
Articles are hosted by Taylor and Francis Online.
The vaporization of strontium, barium, and lanthanum from mixtures of their oxides with urania, zir-conia, and concrete is determined with the objective of understanding the release of these refractory fission products during the core/concrete interaction phase of a degraded core accident. The vaporization of uranium and the total mass vaporized are also determined. Three different concretes having silica contents ranging from 7 to 69 wt% are used to reflect the known range of reactor basemat compositions. In the experiments, the mixtures are vaporized at 2150 or 2400 K into flowing H2 or He-6 H2 gas. The total mass of material that was vaporized is determined by weighing the condensates; the masses of individual elements are determined by chemical analyses of the condensates. The phases present in the heated mixtures are inferred from electron probe microanalyses and X-ray diffraction analyses. Equilibrium calculations are performed using SOLGASMIX and a thermodynamic data base containing 112 gaseous and 108 condensed species. The partial molar free energy of oxygen is calculated from the equilibrium oxygen pressure established in the high-temperature reaction zone between the gas and the sample. Using this experimental data, the release to be expected in the molten core/concrete interaction phase of a severe nuclear reactor accident is estimated. The estimated release of strontium, barium, lanthanum, and uranium is <1% with a basemat concrete of low silica content (7 wt%) and decreases to <0.01% with a basemat concrete of high silica content (69 wt%). The estimated total mass release is ∼0.5% with all three concrete types.