ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Clean Core Thorium Energy marks fuel testing milestone and agreement with L&T
Clean Core Thorium Energy (Clean Core) announced November 12 that test rodlets of its patented thorium-uranium fuel design known as ANEEL (advanced nuclear energy for enriched life) have reached a burnup milestone in the Advanced Test Reactor (ATR) at Idaho National Laboratory.
Bernd Sohnius, Rudolf Anton, Erwin Wehner, Frank-Dietrich Heidt, Rudolf Rabenstein
Nuclear Technology | Volume 99 | Number 2 | August 1992 | Pages 213-221
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT92-A34691
Articles are hosted by Taylor and Francis Online.
A method to determine the release of low activities through natural air exchange from a decommissioned fuel fabrication plant is described. The method has been applied to the buildings of the NUKEM-A plant and was important in obtaining governmental authorization for the plant decommissioning. The air exchange rate in the NUKEM-A plant was measured by using a tracer gas method. For that purpose, N2O as inert gas was injected into representative rooms, and the decrease of concentration caused by exfiltration processes was measured by an infrared gas analyzer as a function of time. The knowledge of this decay curve allows the calculation of low activities, which may be released into the environment by the natural air exchange. The activity is determined according to the German radiation protection regulation. From this, an air exchange rate of ∼25 h−1 would be equivalent to 10% of the tolerable activity emission. The measured exchange rates are less than ∼0.5 h−1. This results—at least for the meteorological conditions during the measurement period—in a significantly lower activity release than that permitted. The measuring method was successfully performed and can be recommended for similar investigations.