ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Robert V. Strain, Kenny C. Gross, John D. B. Lambert, Richard P. Colburn, Toshihiro Odo
Nuclear Technology | Volume 97 | Number 2 | February 1992 | Pages 227-240
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT92-A34618
Articles are hosted by Taylor and Francis Online.
A test containing 19 mixed-oxide fuel pins was operated in the Experimental Breeder Reactor II (EBRII) at peak cladding temperatures near 800°C. Two test pins that had been designed to fail at ∼5 at. % burnup and two low-burnup environmental pins failed and then were operated in the run beyond cladding breach mode for 22 days. Very high delayed neutron signals occurred during the irradiation of the test, and it was terminated as a result of high delayed neutron signals and evidence of plutonium in the coolant. Each of the four pins exhibited multiple breaches in the upper half of the fuel column. Measurements of fuel trapped on the filter section of a deposition sampler that was located above the test indicated that ∼2.7 g of fuel was lost during the irradiation. Postirradiation examination of the pins indicates that most of the fuel was lost from a single pin. The fuel loss resulted in an increase in the background delayed neutron signal but had no other deleterious long-term effect on the operation of the EBR-II.