ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Gregory J. Van Tuyle, Peter Kroeger, Gregory C. Slovik, Bing C. Chan, Robert J. Kennett, Arnold L. Aronson
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 185-202
Technical Paper | Safety of Next Generation Power Reactor / Nuclear Saftey | doi.org/10.13182/NT90-A34427
Articles are hosted by Taylor and Francis Online.
Three advanced design concepts, including two liquid-metal-cooled reactors (LMRs), the Power Reactor Inherently Safe Module (PRISM) and the Sodium Advanced Fast Reactor (SAFR), and a high-temperature gas-cooled reactor (HTGR) are discussed and compared. Each provides inherent or passive safety to improve system safety. The focus is on two primary objectives: reactor shutdown and shutdown heat removal. The LMR and HTGR concepts rely on inherent reactivity feedback to provide an inherent reactor response under a failure-to-scram condition; SAFR also provides a passive shutdown system using Curie point magnets (the self-actuated scram system). For shutdown heat removal, the LMR and HTGR designs rely on passive air cooling of the reactor vessel as the ultimate safety-grade system.