ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Molten salt test loop at INL means real-time data on sensors and materials
The Department of Energy announced March 31 that a new Molten Salt Flow Loop Test Bed at Idaho National Laboratory recently went through its inaugural test run. The closed-loop test system will allow for continuous monitoring and analysis of chloride-based molten salt reactor technology and instruments before the construction of the Southern Company/TerraPower Molten Chloride Reactor Experiment. MCRE—an experimental fast-spectrum molten salt research reactor—will be built at INL’s repurposed Zero Power Physics Reactor, which has been renamed LOTUS (Laboratory for Operation and Testing in the United States).
Yoshiyuki Kataoka, Hiroaki Suzuki, Michio Murase, Isao Sumida, Tetsuo Horiuchi, Minoru Miki
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 147-156
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34103
Articles are hosted by Taylor and Francis Online.
A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW(electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is ∼50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (ΔMCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The 8 × 8 fuel bundles with 3.1-m active lengths are used to achieve high seismic resistance and good thermal-hydraulic characteristics. Operation pressure of 7.0 MPa and volumetric power density of 34.2 kW/ℓ are determined from the CPR and flow stability limitations. The maximum ΔMCPR appears at load rejection transient and is <0.05. The CPR under normal operation is >1.3, which is a sufficient margin for the limitation value of 1.12. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident.