ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. C. Lloyd, S. W. Heaberlin, E. D. Clayton, R. D. Carter
Nuclear Technology | Volume 42 | Number 1 | January 1979 | Pages 13-21
Technical Paper | Reactor | doi.org/10.13182/NT79-A32158
Articles are hosted by Taylor and Francis Online.
A study was made of 100 violations of criticality safety specifications reported over a 10-yr period in the operations of fuel reprocessing plants. The seriousness of each rule violation was evaluated by assigning it a severity index value. The underlying causes, or reasons, for the violations were identified. A criticality event tree was constructed using the parameters, causes, and reasons found in the analysis of the infractions. The event tree provides a means for visualizing the paths to an accidental criticality. Some 65% of the violations were caused by misinterpretation on the part of the operator, being attributed to a lack of clarity in the specification and insufficient training; 33% were attributed to lack of care, whereas only 2% were caused by mechanical failure. A fault tree was constructed by assembling the events that could contribute to an accident. With suitable data on the probabilities of contributing events, the probability of the accident’s occurrence can be forecast. Estimated probabilities for criticality were made, based on the limited data available, that in this case indicate a minimum time span of 244 yr of plant operation per accident ranging up to ∼3000 yr subject to the various underlying assumptions made. Some general suggestions for improvement are formulated based on the cases studied. Although conclusions for other plants may differ in detail, the general method of analysis and the fault tree logic should prove applicable.