ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Hnilica, H. P. Holley, K. Lahner, H. Schmale
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 53-61
Technical Paper | Fuel Cycle | doi.org/10.13182/NT76-A31698
Articles are hosted by Taylor and Francis Online.
The economic incentives for utilizing the plutonium produced in light water reactors can be evaluated for two alternatives: stockpiling or successive recycling of the self-generated plutonium obtained from 1200-MW(e) pressurized water reactor (PWR) and boiling water reactor (BWR) power stations. The economic analysis covers an operating period of 20 yr, starting in 1976. The recycling of plutonium begins with the fourth fuel cycle, and the reload fuel batches consist then of uranium fuel elements and U/Pu fuel elements of the all-rod design in appropriate number to use all the self-generated plutonium of the reprocessed fuel elements from previous cycles. The necessary nuclear data for the fuel cycle cost calculations were obtained by detailed physics calculations. The economic analysis is based on 1976 cost data on different fabrication penalties for the U/Pu assemblies and a plutonium market price of zero. This last assumption is justified for utilities by the lack of a functioning plutonium market and is used as the basis to determine a realistic valuation of plutonium. The obtained levelized fuel costs are discussed in detail for the PWR with and without successive plutonium recycling. Results for the BWR are discussed for comparison purposes. The comparison of fuel cycle cost for the two cases with and without plutonium recycling shows for a plutonium market price of zero and a fabrication penalty of 100% for U/Pu fuel elements a cumulative cost saving of 7% in the case of recycling plutonium in the PWR after 20 yr of operation. Similarly, 6% are obtained for the BWR. Any additional increase in the fabrication penalty by 100% reduces the savings by 1.2%, whereas the influence of the diluent material is practically negligible. If the storage charges for the bred plutonium are taken into consideration, the cost reductions increase further. For low plutonium sale prices, a limited storage period can be economically attractive for a utility, especially if at a later date a higher plutonium sale price is obtainable. Therefore, in the present analysis the minimum plutonium sale price that has to be obtained for the stored plutonium at the selling date was determined by using the following balance equation: For simplicity, the plutonium price was set to zero during the storage period and has a value only at the selling date. To determine an economically justified storage period, the obtained plutonium sale prices are compared to the price of 1 g of 93% enriched uranium. The results of the present analysis indicate for a fabrication penalty of 100% for U/Pu fuel assemblies and a yearly storage charge of 2 $/g Putot, storage time is ∼10 yr for the BWR and PWR. Furthermore, the economically acceptable storage periods increase with increasing fabrication penalties. If, in addition, the removal charges for americium (if the plutonium is stored in form of PuO2) are included, the storage periods are ∼2 yr shorter.