ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Guyot, P. Gubernatis, C. Suteau, R. Le Tellier, J. Lecerf
Nuclear Technology | Volume 185 | Number 1 | January 2014 | Pages 21-38
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-123
Articles are hosted by Taylor and Francis Online.
To consolidate the safety assessment for liquid-metal fast breeder reactors (LMFBRs), hypothetical core disruptive accident (HCDA) sequences have been extensively studied over the past decades. Numerous analyses of the so-called initiating phase (or primary phase) of a HCDA have been made with the safety analysis system code SAS4A. The SAS4A accident analysis code requires that subassemblies or groups of subassemblies be represented together as independent channels. For simulating a severe accident sequence, a subassembly-to-channel assignment procedure has to be implemented to produce the consistent SAS4A input decks. Generally, one uses imposed criteria over relevant reactor parameters to determine the subassembly-to-channel arrangement. The multiple-assembly-per-channel approach introduces corewide coherency effects, which can affect the reactivity balance and therefore the overall accident development. In this paper, a subassembly-to-channel assignment procedure based on the subassembly power-to-flow ratio is presented and implemented to generate the SAS4A input decks over a range of parameter values. The corresponding SAS4A calculations have been performed on a large LMFBR. The purpose of the present series of calculations is to investigate the magnitude of errors encountered in the analysis of the initiating phase related to the subassembly-to-channel arrangement selection, by comparison with a one-subassembly-per-channel reference solution. It appears that a refinement in the channel arrangement substantially reduces corewide coherency effects. Analysis of the calculations also suggests that an accurate representation of the scenario requires the number of channels to be on approximately the same order of magnitude as the total number of subassemblies. Numerical results are examined to provide the reader with quantitative measurements of bias related to subassembly-to-channel arrangement.