ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Richard R. Hobbins, Malcolm L. Russell, Charles S. Olsen, Richard K. McCardell
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 1005-1012
Late Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27692
Articles are hosted by Taylor and Francis Online.
The behavior of melts in severe accident sequences affects the nature (composition and fission product inventory) of the debris released from the vessel upon lower head failure in unmitigated accidents and the coolability of debris at various stages in managed accidents. Core melting progressed further in the Three Mile Island Unit 2 (TMI-2) accident than in any of the severe core damage experiments that have been conducted since the accident, and, therefore, TMI-2 represents a valuable source of information that extends into later phases of core melt progression, including melt relocation into the lower plenum. Examination and evaluation of melts within the TMI-2 reactor vessel indicate that melts can form uncoolable geometries in the core but they can also break through the surrounding crust, massively relocate into the lower plenum, and fragment upon interaction with water resident in the lower plenum to form a rubble bed of coolable geometry. The chemistry of melts, particularly the oxygen potential, affects fission product chemical form and, therefore, retention in the melt. The chemistry also determines interactions of the melts with reactor pressure vessel components.