ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. R. Fredsall
Nuclear Technology | Volume 2 | Number 2 | April 1966 | Pages 89-93
Technical Paper | doi.org/10.13182/NT66-A27485
Articles are hosted by Taylor and Francis Online.
The general problem of determining the optimum-power reduction function for a reactor is a complex one that depends on the desired startup time, the xenon and iodine concentrations, the variations in reactivity, and the purpose of the reactor in question. An analysis method embodied in the digital computer code SHUTDOWN makes possible the determination of near-optimum shutdown modes for most reactors. Determined functions compare favorably with available data for the Canadian NRU reactor and with solutions for the minimization of peak xenon problem found by using Pontryagin's maximum principle.