ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Hashem Akbari, Lawrence M. Grossman
Nuclear Technology | Volume 49 | Number 3 | August 1980 | Pages 400-409
Technical Paper | Reactor Siting | doi.org/10.13182/NT80-A17688
Articles are hosted by Taylor and Francis Online.
A methodology is developed to optimize the size and the location of power plants supplying given demand centers by minimizing the cost of transmission lines and plant capital costs subject to the physical constraint that the power plants must be located within a predetermined feasible geographical region. The optimization problem falls within a class of mixed integer nonlinear constrained programming for which no general method of solution exists. Optimization is carried out in two steps to separate considerations of integer and continuous variables. A complete set of possible configuration alternatives in terms of the number of power plants is first generated by examining the comers of a polyhedron set defined by the upper and lower bounds on the number of power plants at each location, with the demand satisfied through a predefined directed transmission network. Then, through a constrained nonlinear programming technique, the optimum location for each promising, feasible alternative is calculated. The best alternative, i.e., the one having the minimum total cost, is selected as the optimum solution.