ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Fighting fatigue and maintaining 10 CFR Part 26 compliance
Fatigue has been identified as a major risk factor in industrial accidents. According to the National Safety Council, 13 percent of workplace injuries can be attributed to fatigue.1 Other research indicates that working 12 hours per day is associated with a staggering 37 percent increase in risk of injury.2 Considering fatigue was a contributing factor to major nuclear accidents at Chernobyl and Three Mile Island, it makes sense that the Nuclear Regulatory Commission imposes hefty fines to ensure strict adherence to its fatigue management regulations—particularly, Code of Federal Regulations Title 10, Part 26, “Fitness for Duty Programs.”
Alvia E. Bridges, Alan E. Waltar, Robert D. Leggett, Ronald B. Baker, Jerry L. Ethridge
Nuclear Technology | Volume 102 | Number 3 | June 1993 | Pages 353-366
Technical Paper | Material | doi.org/10.13182/NT93-A17034
Articles are hosted by Taylor and Francis Online.
The use of the ferritic/martensitic HT-9 alloy as the cladding and duct material for the Core Demonstration Experiment (CDE) directly contributed to the attainment of the high fuel burnup levels critical to the viability of an economical liquid-metal reactor fuel system. The CDE, a partial core loading of fuel and blanket assemblies in the U.S. Department of Energy’s Fast Flux Test Facility, has successfully attained its irradiation exposure goal of 3 yr. Consisting of ten fuel and six blanket assemblies in a heterogeneous core configuration, the CDE has clearly demonstrated the capability of the advanced fuel and blanket designs to attain high burn ups and fast fluences. Each CDE fuel assembly consisted of 169 large-diameter fuel pins comprising mixed-oxide annular fuel pellets in sealed HT-9 cladding tubes. Each CDE blanket assembly consisted of 91 large-diameter pins comprising solid depleted uranium dioxide pellets in sealed HT-9 cladding tubes. The maximum-exposure CDE fuel assembly reached a peak pellet burnup of 163 900 MWd/tonne metal (M) and a peak fast fluence (E > 0.1 MeV) of 23.3 × 1022 n/cm2. The maximum-exposure CDE blanket assembly reached a peak pellet burnup of 43100 MWd/tonne M and a peak fast fluence (E > 0.1 MeV) of 22.8 × 1022 n/cm2. Lead test fuel assemblies built to CDE specifications continue their successful irradiation and have attained burnups of >238 000 MWd/tonne M with accumulated fast fluences (E > 0.1 MeV) of >38 x 1022 n/cm2. In-core measurements of HT-9 ducts and withdrawal loads of the assemblies indicate that duct distortion will not be a factor that limits the lifetime of the fuel or blanket assemblies. Comparison of the measured and predicted coolant outlet temperatures from the peak CDE fuel and blanket assemblies indicate the irradiation of the CDE has proceeded as planned. The CDE represents a tremendous success in demonstrating the lifetime capabilities of this advanced oxide system using the HT-9 ferritic alloy for structural materials.