ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L. J. Cox, J. Durkee, J. Elson, M. Fensin, R. A. Forster, J. Hendricks, H. G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 298-315
Technical Paper | Special Issue on the Initial Release of MCNP6 / Radiation Transport and Protection | doi.org/10.13182/NT11-135
Articles are hosted by Taylor and Francis Online.
MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of those two computer codes. MCNP6 is the result of five years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in Los Alamos National Laboratory's (LANL) X Computational Physics Division, Monte Carlo Codes Group (XCP-3), and Decision Applications Division, Radiation Transport and Applications Team (D-5), respectively, have combined their code development efforts to produce the next evolution of MCNP. While maintenance and bug fixes will continue for MCNP5 1.60 and MCNPX 2.7.0 for upcoming years, new code development capabilities only will be developed and released in MCNP6. In fact, the initial release of MCNP6 contains 16 new features not previously found in either code. These new features include the abilities to import unstructured mesh geometries from the finite element code Abaqus, to transport photons down to 1.0 eV, to transport electrons down to 10.0 eV, to model complete atomic relaxation emissions, and to generate or read mesh geometries for use with the LANL discrete ordinates code Partisn. The first release of MCNP6, MCNP6 Beta 2, is now available through the Radiation Safety Information Computational Center, and the first production release is expected in calendar year 2012. High confidence in the MCNP6 code is based on its performance with the verification and validation test suites, comparisons to its predecessor codes, the regression test suite, its code development process, and the underlying high-quality nuclear and atomic databases.