ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Alexander Glaser
Nuclear Science and Engineering | Volume 163 | Number 1 | September 2009 | Pages 26-33
Technical Paper | doi.org/10.13182/NSE163-26
Articles are hosted by Taylor and Francis Online.
We report neutronics calculations for the most important natural uranium-fueled reactor types historically used for weapons plutonium production. These include an early design of the Hanford-type graphite-moderated and light-water-cooled reactor used in the United States; the Calder Hall-type graphite-moderated and gas-cooled reactor used in the United Kingdom; and the NRX-type heavy-water-moderated and light-water-cooled reactor, originally developed in Canada for civilian purposes but later used in India and Pakistan for military plutonium production. We show that while it is possible in principle to identify with a high level of confidence weapon-grade plutonium compositions produced in other types of reactors, e.g., light-water-cooled or fast neutron reactors, it is difficult to distinguish among plutonium compositions generated in dedicated production reactors fueled with natural uranium. This suggests that efforts to determine the origin of weapon-grade plutonium for a nuclear forensic analysis could well remain inconclusive without access to databases based on actual samples of the nuclear material.