ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Cole Gentry, G. Ivan Maldonado, Ondrej Chvala, Bojan Petrovic
Nuclear Science and Engineering | Volume 187 | Number 2 | August 2017 | Pages 166-184
Technical Paper | doi.org/10.1080/00295639.2017.1312931
Articles are hosted by Taylor and Francis Online.
This study presents a thorough parametric neutronic analysis of a plate-based tristructual isotropic (TRISO) fuel particle bearing liquid salt–cooled reactor assembly. The analyses presented investigated the effects of altering fuel enrichment, packing fraction, plate region thicknesses, assembly structure thicknesses, assembly size, numbers of plates per assembly, use of burnable poison materials, replacement of assembly and plate carbon material with silicon carbide, and use of uranium nitride fuel kernels. The effects or trends observed included reactivity behavior, discharge burnup, cycle length, and other key design parameters such as moderator temperature coefficients, coolant density coefficients, control blade worth, and impacts upon power peaking (i.e., power and flux distributions).
This study is based upon two-dimensional lattice physics calculations involving the SERPENT 2 code and by using the nonlinear reactivity model as a reasonable tool for predicting discharge burnup. The reported results show that the system’s reactivity can be significantly altered by varying these design parameters, thus providing a starting point for future design optimization studies, and it is understood that future studies will need to be expanded to equilibrium full core analysis for more complete and accurate design and safety assessments, which is also a work in progress.