ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Han-Jie Cai, Fen Fu, Jian-Yang Li, Ya-Ling Zhang, Xun-Chao Zhang, Xue-Song Yan, Zhi-Lei Zhang, Jian-Ya Xv, Mei-Ling Qi, Lei Yang
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 107-115
Technical Paper | doi.org/10.13182/NSE15-59
Articles are hosted by Taylor and Francis Online.
The Institute of Modern Physics, Chinese Academy of Sciences performs research and development on the target station of an accelerator-driven system (ADS) under the China ADS project. A newly developed Monte Carlo program for the design of the target station named GMT1.0 is presented. The program is designed for a massively parallelized simulation of the initiative granular-flow target concept. Based on the combination of the Intranuclear Cascade of Leige (INCL) model and the ABLA evaporation/fission model, GMT1.0 integrates a particle transport code and a nuclear reaction code to simulate a spallation target. For validation, a series of calculations of neutronics characteristics and heat-deposit distributions of solid targets were performed, and a high degree of accuracy was shown for GMT1.0. Using GMT1.0, a systematic study of the neutron economy of the target was performed and the neutronics characteristics of the most optimal parameters were illustrated well.